首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   16篇
  国内免费   5篇
航空   31篇
航天技术   39篇
综合类   3篇
航天   10篇
  2023年   4篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2016年   1篇
  2014年   2篇
  2013年   6篇
  2012年   7篇
  2011年   7篇
  2010年   4篇
  2009年   3篇
  2008年   3篇
  2007年   5篇
  2006年   5篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2001年   3篇
  2000年   5篇
  1999年   2篇
  1996年   3篇
  1995年   4篇
  1990年   1篇
排序方式: 共有83条查询结果,搜索用时 296 毫秒
61.
PHITS (Particle and Heavy-Ion Transport code System) is a general-purpose three-dimensional Monte Carlo code, developed and maintained by RIST, JAEA and KEK in Japan together with Sihver et al. at Chalmers in Sweden. PHITS can deal with the transports of all varieties of hadrons and heavy ions with energies up to around 100 GeV/nucleon, and in this paper the current status of PHITS is presented. We introduce a relativistically covariant version of JQMD, called R-JQMD, that features an improved ground state initialization algorithm, and we will present the introduction of electron and photon transport in PHITS using EGS5, which have increased the energy region for the photon and energy transport from up to around 3 GeV to up to several hundred GeV depending on the atomic number of the target. We show how the accuracy in dose and fluence calculations can be improved by using tabulated cross sections. Benchmarking of shielding and irradiation effects of high energy protons in different materials relevant for shielding of accelerator facilities is also presented. In particular, we show that PHITS can be used for estimating the dose received by aircrews and personnel in space. In recent years, many countries have issued regulations or recommendations to set annual dose limitations for aircrews. Since estimation of cosmic-ray spectra in the atmosphere is an essential issue for the evaluation of aviation doses, we have calculated these spectra using PHITS. The accuracy of the atmospheric propagation simulation of cosmic-ray performed by PHITS has been well verified by experimental cosmic-ray spectra taken under various conditions. Based on a comprehensive analysis of the simulation results, an analytical model called “PARMA” has been proposed for instantaneously estimating the atmospheric cosmic-ray spectra below the altitude of 20 km. We have also performed preliminary simulations of long-term dose distribution measurements at the ISS performed with the joint ESA-FSA experiment MATROSHKA-R (MTR-R) led by the Russian Federation Institute of Biomedical Problems (IMBP) and the ESA supported experiment MATROSHKA (MTR), led by the German Aerospace Center (DLR). For the purpose of examining the applicability of PHITS to the shielding design in space, the absorbed doses in a tissue equivalent water phantom inside an imaginary space vessel has been estimated for different shielding materials of different thicknesses. The results confirm previous results which indicate that PHITS is a suitable tool when performing shielding design studies of spacecrafts.  相似文献   
62.
The review is aimed at the discussion of recent results on spectral profiles produced in collisions of few-electron atoms/ions. Calculations of spectral profiles produced by atom/ion collisions need some preliminary quantum-chemical information such as potential energy surfaces, dipole transition moments, etc. The main advantage of few-electron systems is that all input data can be obtained ab initio or analytically, thus the profiles calculated do not include any fit parameters. Two specific examples have been discussed. The first one deals with radiative transitions accompanying charge-exchange in collisions of one-electron ions with bare nuclei. The second example concerns radiative transitions produced by H + H collisions.  相似文献   
63.
采用电子、质子、氦核和另外一种微量离子代替氧离子的4组元模型分别计算了Fe^11 ,Mg^9 ,Mg^7 ,Ne^7 和Si^7 等微量离子的漂移速度和温度,并和SUMER的观测结果进行了比较。  相似文献   
64.
The combination of recent observational and theoretical work has completed the catalog of the sources of heliospheric Pickup Ions (PUIs). These PUIs are the seed population for Anomalous Cosmic Rays (ACRs), which are accelerated to high energies at or beyond the Termination Shock (TS). For elements with high First Ionization Potentials (high-FIP atoms: e.g., H, He, Ne, etc.), the dominant source of PUIs and ACRs is from neutral atoms that drift into the heliosphere from the Local Interstellar Medium (LISM) and, prior to ionization, are influenced primarily by solar gravitation and radiation pressure (for H). After ionization, these interstellar ions are pickup up by the solar wind, swept out, and are either accelerated near the TS or beyond it. Elements with low first ionization potentials (low-FIP atoms: e.g., C, Si, Mg, Fe, etc.) are also observed as PUIs by Ulysses and as ACRs by Wind and Voyager. But the low-FIP composition of this additional component reveals a very different origin. Low-FIP interstellar atoms are predominantly ionized in the LISM and therefore excluded from the heliosphere by the solar wind. Remarkably, a low-FIP component of PUIs was hypothesized by Banks (J. Geophys. Res. 76, 4341, 1971) over twenty years prior to its direct detection by Ulysses/SWICS (Geiss et al., J. Geophys. Res. 100(23), 373, 1995) The leading concept for the generation of Inner Source PUIs involves an effective recycling of solar wind on grains near the Sun, as originally suggested by Banks. Voyager and Wind also observe low-FIP ACRs, and a grain-related source appears likely and necessary. Two concepts have been proposed to explain these low-FIP ACRs: the first concept involves the acceleration of the Inner Source of PUIs, and the second involves a so-called Outer Source of PUIs generated from solar wind interaction with the large population of grains in the Kuiper Belt. We review here the observational and theoretical work over the last decade that shows how solar wind and heliospheric grains interact to produce pickup ions, and, in turn, anomalous cosmic rays. The inner and outer sources of pickup ions and anomalous cosmic rays exemplify dusty plasma interactions that are fundamental throughout the cosmos for the production of energetic particles and the formation of stellar systems.  相似文献   
65.
Radiation hazard for space missions is mainly due to cosmic ray protons, helium nuclei and light ions, whose energy spectrum is maximum around 1 GeV per nucleon but remains non-negligible for energies up to 15 GeV per nucleon. Nuclear reactions induced by high energy protons are often described by intranuclear cascade plus evaporation models. The attention is focused here on the Liège Intranuclear Cascade model (INCL), which has been shown to reproduce fairly well a great deal of experimental data for nucleon-induced reactions in the 200 MeV to 2 GeV range, when coupled with the ABLA evaporation-fission code. In order to extend the model to other conditions relevant for space radiation, three improvements of INCL are under development. They are reported on here. First, the reaction model has been extended to nucleon–nucleus reactions at incident energies up to 15 GeV, mainly by the inclusion of additional pion production channels in nucleon–nucleon collisions during the cascade. Second, a coalescence mechanism for the emission of light charged particles has been implemented recently. Finally, the model has been modified in order to accommodate light ions as projectiles. First results are shown and compared with illustrative experimental data. Implications for issues concerning radiation protection in space are discussed.  相似文献   
66.
It is possible that the nucleolous inside the cell plays the role of a “gravity receptor”. Furthermore, cells up to 10 μm in diameter can demonstrate some effect due to the redistribution of mitochondria or nucleolous. Effects of gravity should be present in various cell systems where larger objects such as the ribosomes move from cell to cell. In this paper we study the effects of gravity on cells. In particular, we examine the resulting intracellular molecular distribution due to Brownian motion and the ordered distribution of molecules under the action of gravity, where n0 is the number per unit volume at certain level, and n is the number per unit volume above that level. This is an experiment that takes place at a certain orbital altitude in a spacecraft in orbit around Earth, where the acceleration due to the central field is corrected for the oblateness and also the rotation of the Earth. We found that equatorial circular and elliptical orbits have the highest n/n0 ratios. This experiment takes place in circular and elliptical orbits, with eccentricities e = 0, 0.1 and involves a bacterial cell at an orbital altitude of 300 km. We found that n/n0 = 1.00299 and 1.0037 respectively, which is still a 0.6–0.7 % higher than n/n0 = 0.0996685 calculated on the surface of the Earth. Examining mitochondria in similar orbital experiments we found that equatorial orbits result to higher n/n0 ratios. In particular, we found that n/n0 = 8.38119, where an elliptical orbit of eccentricity e = 0.1 results to n/n0 = 13.8525. Both are high above 100%, signifying the importance of Brownian motion over gravity. Our results are of interest to biomedical applications. Molecular concentrations are important for various processes such as the embryogenesis, positional homeostasis and its relation to cell energy expenditure, cell torque, cell deformation, and more. These results indicate that statistical molecular distributions play an important role for the recognition of a particular environment by the cell, in biological space experiment to come.  相似文献   
67.
分子凝结与凝结表面温度的关系机理研究   总被引:1,自引:0,他引:1       下载免费PDF全文
基于相关理论研究,并借助新近研究的“分子污染低温凝结效应设备”,就我国飞行器型号设计密切相关的分子凝结与凝结表面温度的关系机制进行了四个多月的试验研究,取得了相关的二千余个数据。在此基础上,结合相关的理论对数据进行了拟合和分析,得到了分子凝结与凝结表面温度广泛遵循的一般关系——指数关系。对型号设计具有重要的参考价值。  相似文献   
68.
利用解析法计算了高能重离子的径迹结构,通过MonteCarlo方法研究了径迹结构对微电子芯片单粒子翻转的影响.结果表明,考虑了径迹结构的影响后,当离子能量较高时,具有小尺寸灵敏单元、低翻转阈值的芯片的翻转截面较传统的LET描述结果小许多;当离子更重时,这种差别对灵敏单元尺寸较大、翻转阈值较高的芯片也变得较明显.即离子径迹结构的影响是通过其有效地沉积到灵敏单元中的能量与翻转阈值相比较而表现出来的.还研究了作用距离较深、结构宽大的径迹造成的相邻多个灵敏单元的同时翻转,即多位翻转现象,这是用LET所不能反映的.   相似文献   
69.
1,3,5-三硝基苯类化合物的撞击感度与分子拓扑指数   总被引:3,自引:0,他引:3       下载免费PDF全文
李疏芬  王进 《推进技术》2000,21(5):69-72
选取两种分子拓扑指数-分子联接度指数与键参数边通性指数,分别研究了含能化合物1,3,5-三硝基苯类化合物的分子结构与撞击感度间的关系。用分子拓扑学方法,计算了该类化合物的分子拓扑指数,结果表明,分子拓扑性质与撞击感度之间呈明显的相关性,并与景子化学计算方法的结果相一致,反映了引发基团与其它强授电子基团是影响撞击感度的重要因素。  相似文献   
70.
利用色质谱方法检测卫星真空热试验污染物成分   总被引:1,自引:0,他引:1  
在真空热试验过程中进行了污染物的采集及成分分析试验。利用污染采集板收集污染物,丙酮溶液洗脱污染物,气相色谱-质谱联用方法对污染物进行成分分析。确定了整星热试验和太阳电池翼热试验中的主要污染物成分为硅氧烷和邻苯二甲酸酯,热试验中污染物甲基苯基硅氧烷可能来源于粘结剂。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号