全文获取类型
收费全文 | 194篇 |
免费 | 25篇 |
国内免费 | 10篇 |
专业分类
航空 | 16篇 |
航天技术 | 202篇 |
综合类 | 1篇 |
航天 | 10篇 |
出版年
2023年 | 5篇 |
2022年 | 4篇 |
2021年 | 9篇 |
2020年 | 11篇 |
2019年 | 14篇 |
2018年 | 13篇 |
2017年 | 2篇 |
2016年 | 4篇 |
2015年 | 5篇 |
2014年 | 23篇 |
2013年 | 21篇 |
2012年 | 14篇 |
2011年 | 11篇 |
2010年 | 15篇 |
2009年 | 21篇 |
2008年 | 19篇 |
2007年 | 1篇 |
2006年 | 6篇 |
2005年 | 5篇 |
2003年 | 8篇 |
2002年 | 1篇 |
2000年 | 1篇 |
1999年 | 2篇 |
1998年 | 3篇 |
1997年 | 1篇 |
1996年 | 2篇 |
1995年 | 2篇 |
1994年 | 3篇 |
1993年 | 1篇 |
1992年 | 2篇 |
排序方式: 共有229条查询结果,搜索用时 15 毫秒
21.
A.O. Olawepo J.O. Adeniyi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
Ionosonde data from two equatorial stations in the African sector have been used to study the signatures of four strong geomagnetic storms on the height – electron density profiles of the equatorial ionosphere with the objective of investigating the effects and extent of the effects on the three layers of the equatorial ionosphere. The results showed that strong geomagnetic storms produced effects of varying degrees on the three layers of the ionosphere. Effect of strong geomagnetic storms on the lower layers of the equatorial ionosphere can be significant when compared with effect at the F2-layer. Fluctuations in the height of ionization within the E-layer were as much as 0% to +20.7% compared to −12.5% to +8.3% for the F2-layer. The 2007 version of the International Reference Ionosphere, IRI-07 storm-time model reproduced responses at the E-layer but overestimated the observed storm profiles for the F1- and F2-layers. 相似文献
22.
Emirant Bertillas Amabayo Lee-Anne McKinnell Pierre J. Cilliers 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The occurrence of mid-latitude spread F (SF) over South Africa has not been extensively studied since the installation of the DPS-4 digisondes in 1996 and 2000 at Grahamstown (33.32 °S, 26.50 °E) and Madimbo (22.38 °S, 30.88 °E) respectively. This study is intended to quantify the probability of occurrence of F region disturbances associated with SF over South Africa. A study was conducted using data for 8 years (2001–2008) over Madimbo (with a time resolution of 30 min) and Grahamstown (with a variable time resolution of 15 and 30 min). In this study, SF has been classified into frequency SF (FSF), range SF (RSF) and mixed SF (MSF). The SF events were identified by manually identifying ionograms showing SF and tabulating them according to type for further statistical analysis. The results show that the diurnal pattern of SF peaks strongly between 01:00 and 02:00 local time, LT (LT = UT + 2 h), where UT is the universal time. This pattern is true for all seasons and types of SF at Madimbo and Grahamstown in 2001 and 2005, except for RSF which had peaks during autumn and spring in 2001 at Madimbo. The probability of both MSF and FSF tends to increase with decreasing solar activity, with a peak in 2005 (a moderate solar activity period). The seasonal peaks of MSF and FSF are more frequent during winter months at both Madimbo and Grahamstown. In this study, SF was evident in ∼0.03% and ∼0.06% of the available ionograms at Madimbo and Grahamstown respectively during the 8 years. 相似文献
23.
N. Mridula Tarun Kumar PantC. Vineeth K. Kishore Kumar 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The general features of occurrence of an additional layer on the bottom side of F region, referred to as F0.5 layer in the pre noon period, over the magnetic equatorial location of Trivandrum (8.5° N; 77° E; dip lat of 0.5° N) in India during the period from 2004 to 2007 are presented using ionosonde observations. The F0.5 layer has a June (northern summer) solsticial maximum probability of occurrence with secondary maxima during December (northern winter) solstice. The seasonal as well as the day-to-day variability in the occurrence of F0.5 layer as mentioned in this paper seems to be a result of the variations in the amplitude and phases of the tides and gravity waves, and inventory of the metallic ions of meteoric origin. This study brings out an important manifestation of morning time F layer base region dynamics. 相似文献
24.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2023,71(3):1806-1817
The Earth’s ionosphere can be described by a spherical harmonic (SH) expansion up to a specific degree. However, there exist negative vertical total electron content (VTEC) values in the global ionosphere map (GIM) with the SH expansion model. In this contribution, we specifically investigated the negative VTEC values that are induced by the SH expansion model and validated the performance of the inequality-constrained least squares (ICLS) method in eliminating the negative VTEC values. The GPS data from 2004 to 2017 was selected to cover one solar cycle and the experiments under different solar activity conditions were analyzed. The results in our work show that the occurrence of the negative VTEC values is attributed to the deficiency of the SH expansion model when the VTEC itself is small instead of the unevenly distribution of the GNSS stations. The negative VTEC values appear periodically in the temporal domain, showing apparently one year and half year periods. During one year, two peaks in June and December can be observed in the time series of the negative VTEC values. The number of negative VTEC values in June is obvious larger than that in December. During one solar cycle, the number of negative VTEC values under quiet solar activity condition is obvious larger than that under strong solar activity condition. In the spatial domain, the appearance of the negative VTEC values is strongly related with the movement of the subsolar point. In the latitude of the subsolar point has the largest magnitude, the negative values will appear on the opposite hemisphere and the further from the subsolar point the more negative values. The maximum number of the negative VTEC values in the southern hemisphere appears in June, while the peak value in the northern hemisphere appears in December. The maximum number of negative VTEC values in the southern hemisphere is generally larger than that in the northern hemisphere. In addition, the negative VTEC values are distributed both at middle latitude and high latitude in the southern hemisphere, while they are mainly distributed at high latitude in the northern hemisphere. When the ICLS method is used, the negative VTEC values can be eliminated efficiently and it has nearly no influence on the positive VTEC values. The ICLS method can also improve the receiver’s differential code bias (DCB) and significantly decrease the unreasonable negative slant TEC (STEC) values along the lines of sight. Using the final GIM product of the Jet Propulsion Laboratory (JPLG) as a reference, the root mean square (RMS) of the ICLS solution shows maximum 25%, 20% and 45% improvement relative to the least squares (LS) solution at northern high latitude, southern middle latitude and southern high latitude, respectively. 相似文献
25.
Yihua Zheng Anthony T.Y. Lui Mei-Ching Fok Brian J. Anderson Pontus C. Brandt Donald G. Mitchell 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(8):1234-1242
One essential component of magnetosphere and ionosphere coupling is the closure of the ring current through Region 2 field-aligned current (FAC). Using the Comprehensive Ring Current Model (CRCM), which includes magnetosphere and ionosphere coupling by solving the kinetic equation of ring current particles and the closure of the electric currents between the two regions, we have investigated the effects of high latitude potential, ionospheric conductivity, plasma sheet density and different magnetic field models on the development of Region 2 field-aligned currents, and the relationship between R2 FACs and the ring current. It is shown that an increase in high latitude potential, ionospheric conductivity or plasma sheet density generally results in an increase in Region 2 FACs’ intensity, but R2 FACs display different local time and latitudinal distributions for changes in each parameter due to the different mechanisms involved. Our simulation results show that the magnetic field configuration of the inner magnetosphere is also an important factor in the development of Region 2 field-aligned current. More numerical experiments and observational results are needed in further our understanding of the complex relationship of the two current systems. 相似文献
26.
Qiang Zhang Qile Zhao 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(3):1214-1226
Spherical harmonic (SH) expansion is widely used to model the global ionosphere map (GIM) of vertical total electron content (VTEC). According to the impact of different data processing methods of the SH expansion model on the VTEC maps, we specifically performed comprehensive analysis in terms of the data sampling rate, the time resolution, the spherical harmonic degree, and the relative constraint. One month of GPS data (January in 2016) from the International GNSS (Global Navigation Satellite System) Service (IGS) network in a moderate ionospheric activity period at the descending phase of Solar Cycle 24 was processed. To improve the computational efficiency of the daily GIM generation, the data sampling rate of 5?min was recommended allowing the GIM precision loss within 0.10 TECU (total electron content unit). The global VTEC map could be better represented in temporal and spatial domains with higher time resolution and higher spherical harmonic degree, especially at low latitude bands and in the southern hemisphere. The GIM precision improvement was about 10.91% for 1-h and about 15.15% for 0.5-h compared with the commonly used 2-h time resolution. The use of spherical harmonic degree 17 or 20 instead of 15 could improve the precision by 3.19% or 6.06%. We also found that an optimal relative constraint had to be found experimentally considering both the GIM precision and the GIM root mean square (RMS) map. 相似文献
27.
A.V. Agapitov O.K. CheremnykhA.S. Parnowski 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(10):1682-1687
We investigate the generation of ballooning perturbations in the inner magnetosphere of the Earth in the dipole model of the geomagnetic field taking into account ionospheric boundary conditions. The ionosphere is considered as a thin layer with finite conductivity. The eigenmode spectrum is discrete and consists of Alfvén, slow magnetosonic, flute and incompressible modes. Their interaction depends on ionospheric conductivity. The decay rate is small in noon and night sectors and large in dawn and dusk sectors. The lowest stability threshold α/γ ≈ 4.25 is determined by flute modes. 相似文献
28.
半个太阳活动周期内我国中纬地区上空电离层等效板厚的变化特征 总被引:1,自引:0,他引:1
本文用新乡(电离层400km对下点是:32.4°N,115.6°E)、重庆(电离层400km对下点是:27.2°N,108.7°E)接收日本同步卫星ETS-Ⅱ的信标资料,研究了我国中纬地区上空半个太阳活动周期内(1981—1985)电离层等效板厚的变化特征,得到了等效板厚日变化、季变化的二维和三维等值图。由付里叶分析和回归方法得出等效板厚日变化各谐波分量与太阳黑子数12个月滑动平均值之间存在弱的线性关系。同时指出在等效板厚日变化中,于当地时0400—0700LT存在一明显的黎明峰。并对出现这种峰的原因作了讨论。 相似文献
29.
J.S. Xu X.J. LiY.W. Liu M. Jing 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
Based on measurements of ground-based GPS station network, differences of the mid-latitude ionospheric TEC in the east and west sides of North America, South America and Oceania have been analyzed in this paper. Results show that for nearly all seasons from 2001 to 2010 and in both sides of the longitudes with zero declination, there exist systematic differences for the mid-latitude ionospheric TEC in the regions mentioned above and the features of these differences markedly depend upon the local time but less depend upon seasons and the level of solar activity. Theory analysis shows that the longitude variations of both declination and zonal thermospheric winds are one of important factors to cause differences of the mid-latitude ionospheric TEC in both sides of the longitudes with zero declination. 相似文献
30.
X. Wang J.K. Shi G.J. Wang G.A. Zherebtsov O.M. Pirog 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(4):556-561
Responses of low-latitude ionospheric critical frequency of F2 layer to geomagnetic activities in different seasons and under different levels of solar activity are investigated by analyzing the ionospheric foF2 data from DPS-4 Digisonde in Hainan Observatory during 2002–2005. The results are as follows: (1) the response of foF2 to geomagnetic activity in Hainan shows obvious diurnal variation except for the summer in low solar activity period. Generally, geomagnetic activity will cause foF2 to increase at daytime and decrease at nighttime. The intensity of response of foF2 is stronger at nighttime than that at daytime; (2) seasonal dependence of the response of foF2 to geomagnetic activity is very obvious. The negative ionospheric storm effect is the strongest in summer and the positive ionospheric storm effect is the strongest in winter; (3) the solar cycle has important effect on the response of foF2 to geomagnetic activity in Hainan. In high solar activity period, the diurnal variation of the response of foF2 is very pronounced in each season, and the strong ionospheric response can last several days. In low solar activity period, ionospheric response has very pronounced diurnal variation in winter only; (4) the local time of geomagnetic activities occurring also has important effect on the responses of foF2 in Hainan. Generally, geomagnetic activities occurred at nighttime can cause stronger and longer responses of foF2 in Hainan. 相似文献