首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   9篇
  国内免费   2篇
航空   10篇
航天技术   40篇
综合类   1篇
航天   15篇
  2024年   1篇
  2023年   6篇
  2022年   4篇
  2021年   7篇
  2020年   4篇
  2019年   4篇
  2018年   2篇
  2014年   3篇
  2013年   12篇
  2012年   5篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  1998年   1篇
  1995年   1篇
  1990年   1篇
排序方式: 共有66条查询结果,搜索用时 31 毫秒
61.
针对冰下避障航迹规划问题,提出了一种基于改进A*算法的三维冰下避障航迹规划算法.不同于传统的A*航迹规划算法,该算法结合了人工势场航迹规划算法的思想,将水下地形碰撞约束、海冰碰撞约束以及UUV巡航高度约束重新编排.算法分析表明,该避障航迹规划算法能够有效增强UUV冰下避障能力与定深巡航高度控制能力.基于改进的A*冰下避障航迹规划算法,给出了上述约束的设计方法并进行了仿真验证.仿真结果表明,基于上述约束的航迹规划算法具有良好的避障能力、巡航高度控制能力以及航行距离控制能力.  相似文献   
62.
Sea fog detection with remote sensing images is a challenging task. Driven by the different image characteristics between fog and other types of clouds, such as textures and colors, it can be achieved by using image processing methods. Currently, most of the available methods are datadriven and relying on manual annotations. However, because few meteorological observations and buoys over the sea can be realized, obtaining visibility information to help the annotations is difficult. Considering t...  相似文献   
63.
The continental shelf in front of Nayarit is located in the northern limit of the tropical Eastern Pacific, characterized by constituting a convergence zone of different masses of water, forming an area of significant hydrographic variability. Based on satellite remote sensing data and reanalysis between 2003 and 2019 of sea surface temperature (SST), wind stress, Ekman velocity, and geostrophic velocity, the contribution of the seasonal cycle to the variability of the study area were analyzed through climatological means, Hovmöhler diagrams, and Empirical Orthogonal Functions. The results show that in the zone in front of Matanchén Bay (21.5 °N) and the adjacent continental shelf, there is a core of warm surface water. The distribution of the SST is explained by the seasonal pattern of meridional/zonal variability in the thermal gradient, where the EOFs show the influence of the annual scale in both modes, with the only difference being that the first describes the meridional gradient as the dominant signal (66.2%), and the second shows the zonal behavior of the thermal gradient (16.6%). The summer weakening of the wind stress and Ekman speed is the product of the irregular shape of the coastline, the extension of the continental shelf, and the divergence of the North American monsoon around 21°N, whereas during the rest of the year an intensification of these parameters prevailed in front of Cabo Corrientes. On the other hand, the intense geostrophic flow in summer does not contribute to the increase in SST on the continental shelf because it diverges around 22.5°N. Likewise, during the winter, the formation of a cyclonic geostrophic gyre located inside the continental shelf, between the coast and the Marías Islands, stands out.  相似文献   
64.
In this study, we evaluate Sentinel-3A satellite synthetic aperture radar (SAR) altimeter observations along the Northwest Atlantic coast, spanning the Nova Scotian Shelf, Gulf of Maine, and Mid-Atlantic Bight. Comparisons are made of altimeter sea surface height (SSH) measurements from three different altimeter data processing approaches: fully-focused synthetic aperture radar (FFSAR), un-focused SAR (UFSAR), and conventional low-resolution mode (LRM). Results show that fully-focused SAR data always outperform LRM data and are comparable or slightly better than the nominal un-focused SAR product. SSH measurement noise in both SAR-mode datasets is significantly reduced compared to LRM. FFSAR SSH 20-Hz noise levels, derived from 80-Hz FFSAR data, are lower than 20-Hz UFSAR SSH with 25% noise reduction offshore of 5 km, and 55–70% within 5 km of the coast. The offshore noise improvement is most likely due to the higher native along-track data posting rate (80 Hz for FFSAR, and 20 Hz for UFSAR), while the large coastal improvement indicates an apparent FFSAR data processing advantage approaching the coastlines. FFSAR-derived geostrophic ocean current estimates exhibit the lowest bias and noise when compared to in situ buoy-measured currents. Assessment at short spatial scales of 5–20 km reveals that Sentinel-3A SAR data provide sharper and more realistic measurement of small-scale sea surface slopes associated with expected nearshore coastal currents and small-scale gyre features that are much less well resolved in conventional altimetric LRM data.  相似文献   
65.
Monitoring sea surface temperature (SST) over a long-term and detecting the anomalies highly contribute to understanding the prevailing water quality of the sea. Earth observation satellite images are the key data sources that offer the long-term SST detection in a cost and time effective way. Since the Sea of Marmara in Türkiye is surrounded by the highly populated provinces, the water quality of the sea has gained importance for scientific and public communities over the years. This article emphasizes on the significance of detecting SST trend and corresponding anomalies of the Sea of Marmara over the past 32 years. To address the SST variations of the Sea of Marmara in time, a comprehensive set of both field and satellite data regarding SSTs were obtained within the context of this study. The SST trend and its anomalies between the years 1990 and 2021 were detected by applying Seasonal-Trend decomposition procedure based on LOESS (STL) method to NOAA OISST V2 data. On the other hand, spatial SST distribution was detected with Landsat-8, Sentinel-3 and NOAA OISST V2 satellite data. SST results were verified with the in-situ data within the scope of accuracy assessment. The results showed that SST time-series data performed an increasing trend and had anomalies mostly during the spring months in the recent years.  相似文献   
66.
A reprocessing of sea-level anomalies (SLA) resulting from X-TRACK coastal altimetry was carried out for the ENVISAT (2002–2010) and TOPEX/POSEIDON-Jason (1992–2019) satellite missions in the coastal area of the Mexican Caribbean. This consisted of applying a tidal correction to coastal altimetry sea level observations. Harmonic analysis of five coastal tide gauge records was performed to estimate the most important tidal components of the area, resulting on M2, N2, O1, S2, K1, MF, and MM. The tidal signal was reconstructed with the seven tidal components using the TPXO9 model. The SLA signals corrected with the seven tidal components were validated with in situ data from coastal tide gauges. The validation showed that the TPXO9 tidal barotropic model (1/30° grid) used to reconstruct the tidal signal with the seven representative tidal components performed better than the FES2012 global model (1/16° grid) that uses 33 tidal components. The reprocessed SLAs showed clear seasonality with significant signals at 4, 6, and 12 months, with the annual signal being the dominant one. In the Mexican Caribbean coastal zone, oceanographic processes with different scales (from coastal to mesoscale) converge, showing their complexity in the different SLA signals observed. The aim of this work is to contribute to the analysis of coastal altimetry data and understanding the sea level variations in the Mexican Caribbean. This work is the first step in the implementation of methodologies that take advantage of coastal satellite altimetry in the Caribbean Sea.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号