首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   842篇
  免费   134篇
  国内免费   177篇
航空   501篇
航天技术   390篇
综合类   89篇
航天   173篇
  2024年   4篇
  2023年   23篇
  2022年   28篇
  2021年   37篇
  2020年   45篇
  2019年   36篇
  2018年   50篇
  2017年   47篇
  2016年   32篇
  2015年   37篇
  2014年   74篇
  2013年   54篇
  2012年   71篇
  2011年   74篇
  2010年   48篇
  2009年   82篇
  2008年   54篇
  2007年   35篇
  2006年   52篇
  2005年   46篇
  2004年   21篇
  2003年   30篇
  2002年   21篇
  2001年   16篇
  2000年   14篇
  1999年   14篇
  1998年   12篇
  1997年   13篇
  1996年   15篇
  1995年   12篇
  1994年   13篇
  1993年   10篇
  1992年   11篇
  1991年   9篇
  1990年   5篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1984年   2篇
排序方式: 共有1153条查询结果,搜索用时 796 毫秒
171.
Vertical total electron content (VTEC) observed at Mbarara (geographic co-ordinates: 0.60°S, 30.74°E; geomagnetic coordinates: 10.22°S, 102.36°E), Uganda, for the period 2001–2009 have been used to study the diurnal, seasonal and solar activity variations. The daily values of the 10.7 cm radio flux (F10.7) and sunspot number (R) were used to represent Solar Extreme Ultraviolet Variability (EUV). VTEC is generally higher during high solar activity period for all the seasons and increases from 0600 h LT and reaches its maximum value within 1400 h–1500 h LT. All analysed linear and quadratic fits demonstrate positive VTEC-F10.7 and positive VTEC-R correlation, with all fits at 0000 h and 1400 h LT being significant with a confidence level of 95% when both linear and quadratic models are used. All the fits at 0600 h LT are insignificant with a confidence level of 95%. Generally, over Mbarara, quadratic fit shows that VTEC saturates during all seasons for F10.7 more than 200 units and R more than 150 units. The result of this study can be used to improve the International Reference Ionosphere (IRI) prediction of TEC around the equatorial region of the African sector.  相似文献   
172.
In this paper, response of low latitude ionosphere to a moderate geomagnetic storm of 7–8 May 2005 (SSC: 1920 UT on 7 May with Sym-H minimum, ∼−112 nT around 1600 UT on 8 May) has been investigated using the GPS measurements from a near EIA crest region, Rajkot (Geog. 22.29°N, 70.74°E, Geomag.14°), India. We found a decrease in total electron content (TEC) in 12 h after the onset of the storm, an increase during and after 6 h of Sym-H deep minimum with a decrease below its usual-day level on the second day during the recovery phase of the storm. On 8 May, an increase of TEC is observed after sunset and during post-midnight hours (maximum up to 170%) with the formation of ionospheric plasma bubbles followed by a nearly simultaneous onset of scintillations at L-band frequencies following the time of rapid decrease in Sym-H index (−30 nT/h around 1300 UT).  相似文献   
173.
Available long-term and near-real time global and regional maps of foF2 are examined in relation to telecommunication and aeronomy requirements and recommendations are made for the best present-day maps to adopt. In particular, it is shown that current CCIR maps do not meet all requirements and should not necessarily be regarded as standards against which other mappings should be compared.  相似文献   
174.
Several years of hourly daily GPS measurements of the vertical total electron content (TEC) and of the equivalent slab thickness made at different European locations are analysed by using the linear regression technique to demonstrate the response of these two ionospheric parameters to seasonal variations. It is found that both TEC and slab thickness are highly correlated with season. Analytical relationships are determined expressing the seasonal dependence of the vertical TEC and of the equivalent slab thickness as a function of the seasonal parameter cos χ at noon in each location.  相似文献   
175.
材料表面的二次电子发射会触发和维持空间高功率射频器件的共振雪崩放电现象,这种现象又被称为微放电效应。微放电效应是限制空间大功率微波部件应用的关键问题之一。从微放电作用的机理出发,首先介绍了两种微放电类型(单表面与双表面)的基本物理机理;然后总结了当前主流的微放电抑制方法并给出各自应用于空间大功率微波部件时的限制。针对空间大功率微波部件微放电抑制的特殊问题,综述了国内近5年来在表面处理法抑制微放电领域的研究成果并预测了微放电抑制技术的发展趋势。  相似文献   
176.
During solar flares, the X-ray radiation suddenly increases, resulting in an increase in the electron density of the atmospheric D region and a strong absorption of short-wave radio waves. Based on Langfang medium frequency (MF) radar, this paper analyzed the variation characteristics of D region in the lower ionosphere from 62 km to 82 km. The analysis focused on multiple C-level and M-level solar flare events before and after the large-scale flare event at 11:53 (UT) on September 6, 2017. The results show that it is difficult to detect the electron density over 70 km in Langfang during solar flares, but the electron density value can be obtained as low as 62 km, and the stronger the flare intensity, the lower the detectable electron density height. Besides, the equal electron density height, the received power of X and O waves will also be significantly reduced during the flares, and the reduction of equal electron density height has a weak linear relationship with flare intensity.  相似文献   
177.
A tubular moving-magnet linear oscillating motor (TMMLOM) has merits of high efficiency and excellent dynamic capability. To enhance the thrust performance, quasi-Halbach permanent magnet (PM) arrays are arranged on its mover in the application of a linear electro-hydrostatic actuator in more electric aircraft. The arrays are assembled by several individual segments, which lead to gaps between them inevitably. To investigate the effects of the gaps on the radial magnetic flux density and the machine thrust in this paper, an analytical model is built considering both axial and radial gaps. The model is validated by finite element simulations and experimental results. Distributions of the magnetic flux are described in condition of different sizes of radial and axial gaps. Besides, the output force is also discussed in normal and end windings. Finally, the model has demonstrated that both kinds of gaps have a negative effect on the thrust, and the linear motor is more sensitive to radial ones.  相似文献   
178.
From September 7 to 8, 2017, a G4-level strong geomagnetic storm occurred, which seriously impacted on the Earth’s ionosphere. In this work, the global ionospheric maps released by Chinese Academy of Sciences are used to investigate the ionospheric responses over China and its adjacent regions during the strong storm. The prominent TEC enhancements, which mainly associated with the neutral wind and eastward prompt penetration electric field, are observed at equatorial ionization anomaly crests during the main phase of the storm on 8 September 2017. Compared with those on 8 September, the TEC enhancements move to lower-latitude regions during the recovery phase on 9 September. A moderate storm occurred well before the start of the strong storm causes similar middle-latitude TEC enhancements on 7 September. However, the weak TEC depletion is observed at middle and low latitude on 9–10 September, which could be associated with the prevailing westward disturbance electric field or storm-time neural composition changes. In addition, the storm-time RMS and STD values of the ionospheric TEC grids over China increase significantly due to the major geomagnetic storm. The maximum of the RMS reaches 12.0 TECU, while the maximum of the STD reaches 8.3 TECU at ~04UT on 8 September.  相似文献   
179.
After the detection of many anomalies in the Swarm accelerometer data, an alternative method has been developed to determine thermospheric densities for the three-satellite mission. Using a precise orbit determination approach, non-gravitational and aerodynamic-only accelerations are estimated from the high-quality Swarm GPS data. The GPS-derived non-gravitational accelerations serve as a baseline for the correction of the Swarm-C along-track accelerometer data. The aerodynamic accelerations are converted directly into thermospheric densities for all Swarm satellites, albeit at a much lower temporal resolution than the accelerometers would have been able to deliver. The resulting density and acceleration data sets are part of the European Space Agency Level 2 Swarm products.To improve the Swarm densities, two modifications have recently been added to our original processing scheme. They consist of a more refined handling of radiation pressure accelerations and the use of a high-fidelity satellite geometry and improved aerodynamic model. These modifications lead to a better agreement between estimated Swarm densities and NRLMSISE-00 model densities. The GPS-derived Swarm densities show variations due to solar and geomagnetic activity, as well as seasonal, latitudinal and diurnal variations. For low solar activity, however, the aerodynamic signal experienced by the Swarm satellites is very small, and therefore it is more difficult to accurately resolve latitudinal density variability using GPS data, especially for the higher-flying Swarm-B satellite. Therefore, mean orbit densities are also included in the Swarm density product.  相似文献   
180.
We have compared the TEC obtained from the IRI-2012 model with the GPS derived TEC data recorded within southern crest of the EIA in the Eastern Africa region using the monthly means of the 5 international quiet days for equinoxes and solstices months for the period of 2012 – 2013. GPS-derived TEC data have been obtained from the Africa array and IGS network of ground based dual-frequency GPS receivers from four stations (Kigali (1.95°S, 30.09°E; Geom. Lat. 11.63°S), Malindi (2.99°S, 40.19°E; Geom. Lat. 12.42°S), Mbarara (0.60°S, 30.74°E; Geom. Lat. 10.22°S) and Nairobi (1.22°S, 36.89°E; Geom. Lat. 10.69°S)) located within the EIA crest in this region. All the three options for topside Ne of IRI-2012 model and ABT-2009 for bottomside thickness have been used to compute the IRI TEC. Also URSI coefficients were considered in this study. These results are compared with the TEC estimated from GPS measurements. Correlation Coefficients between the two sets of data, the Root-Mean Square Errors (RMSE) of the IRI-TEC from the GPS-TEC, and the percentage RMSE of the IRI-TEC from the GPS-TEC have been computed. Our general results show that IRI-2012 model with all three options overestimates the GPS-TEC for all seasons and at all stations, and IRI-2001 overestimates GPS-TEC more compared with other options. IRI-Neq and IRI-01-corr are closely matching in most of the time. The observation also shows that, GPS TEC are underestimated by TEC from IRI model during noon hours, especially during equinoctial months. Further, GPS-TEC values and IRI-TEC values using all the three topside Ne options show very good correlation (above 0.8). On the other hand, the TEC using IRI-Neq and IRI-01- corr had smaller deviations from the GPS-TEC compared to the IRI-2001.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号