首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   351篇
  免费   50篇
  国内免费   11篇
航空   73篇
航天技术   257篇
综合类   13篇
航天   69篇
  2023年   8篇
  2022年   8篇
  2021年   6篇
  2020年   14篇
  2019年   13篇
  2018年   12篇
  2017年   4篇
  2016年   2篇
  2015年   7篇
  2014年   20篇
  2013年   25篇
  2012年   23篇
  2011年   30篇
  2010年   18篇
  2009年   24篇
  2008年   35篇
  2007年   21篇
  2006年   14篇
  2005年   21篇
  2004年   16篇
  2003年   6篇
  2002年   8篇
  2001年   14篇
  2000年   13篇
  1999年   6篇
  1998年   5篇
  1997年   4篇
  1996年   5篇
  1995年   8篇
  1994年   11篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
排序方式: 共有412条查询结果,搜索用时 343 毫秒
251.
In this paper, we analyze the footpoint motion of two large solar flares using observations made by the Transition Region and Coronal Explorer (TRACE) and Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The two flares are the M5.7 flare of March 14, 2002 and the X10 flare of October 29, 2003. They are both classical two-ribbon flares as observed in TRACE 1600 or 171 Å images and have long-duration conjugate hard X-ray (HXR) footpoint emission. We use the ‘center-of-mass’ method to locate the centroids of the UV/EUV flare ribbons. The results are: (1) The conjugate UV/EUV ribbons and HXR footpoints of the two flares show a converging (inward) motion during the impulsive phase. For the two flares, the converging motion lasts about 3 and 10 min, respectively. The usual separation (outward) motion for the flare ribbons and footpoints take place only after the converging motion. (2) During the inward and the outward motion, the conjugate ribbons and footpoints of the two events exhibit a strong unshear motion. In obtaining above results, TRACE UV/EUV and RHESSI HXR data show an overall agreement. The two events demonstrate that the magnetic reconnection for the flares occurs in highly sheared magnetic field. Furthermore, the results support the magnetic model constructed by Ji et al. [Ji, H., Huang, G., Wang, H. Astrophys. J. 660, 893–900, 2007], who proposed that the contracting motion of flaring loops is the signature of the relaxation of sheared magnetic fields.  相似文献   
252.
In order to consider an asymmetric field distribution inside a cylindrical tube with a circular cross section, with the field magnitude maximum reached at a point different from the geometrical centre of the tube, we propose a new solution obtained in bi-cylindrical coordinates. If the parameter of the system is very large, the solution approaches the well known symmetric Lundquist solution. The new solution models a field magnitude shift due to relative motion of the cylinder and the ambient solar wind. If the cylinder is moving much faster than the ambient medium, its field maximum is shifted forward, otherwise it is shifted in the opposite direction.  相似文献   
253.
This brief report summarized the latest advances of the heliospheric physics research in China during the period of 2002-2003, made independently by Chinese space physicists and through international collaboration. The report covers all aspects of the heliospheric physics, including theoretical studies, numerical simulation and data analysis.  相似文献   
254.
A magnetic sail is an advanced propellantless propulsion system that uses the interaction between the solar wind and an artificial magnetic field generated by the spacecraft, to produce a propulsive thrust in interplanetary space. The aim of this paper is to collect the available experimental data, and the simulation results, to develop a simplified mathematical model that describes the propulsive acceleration of a magnetic sail, in an analytical form, for mission analysis purposes. Such a mathematical model is then used for estimating the performance of a magnetic sail-based spacecraft in a two-dimensional, minimum time, deep space mission scenario. In particular, optimal and locally optimal steering laws are derived using an indirect approach. The obtained results are then applied to a mission analysis involving both an optimal Earth–Venus (circle-to-circle) interplanetary transfer, and a locally optimal Solar System escape trajectory. For example, assuming a characteristic acceleration of 1 mm/s2, an optimal Earth–Venus transfer may be completed within about 380 days.  相似文献   
255.
This study presents comparisons between the Pioneer Venus Orbiter (PVO) magnetometer (OMAG) observations and the HYB-Venus hybrid simulation code. The comparisons are made near periapsides of four PVO orbits using the full resolution PVO/OMAG data. Also, the statistics of the solar wind and interplanetary magnetic field (IMF) conditions at Venus are studied using the PVO interplanetary dataset. The statistics include the histograms and the probability density maps of the selected upstream parameters. The confidence intervals derived from the upstream statistics demonstrate the nominal simulation input parameter space. Moreover, the probability density maps give the dependencies between the upstream parameters. The comparisons between the simulation code and the data along the spacecraft trajectory show that the basic, large scale, trends seen in the magnetic field can be understood by the current simulation runs. The discrepancies between the simulation and the data were found to arise at low altitudes close to the planetary ionosphere in the region which cannot be resolved in detail by the grid size of the runs.  相似文献   
256.
This chapter reviews the current understanding of ring current dynamics. The terrestrial ring current is an electric current flowing toroidally around the Earth, centered at the equatorial plane and at altitudes of ∼10,000 to 60,000 km. Enhancements in this current are responsible for global decreases in the Earth’s surface magnetic field, which have been used to define geomagnetic storms. Intense geospace magnetic storms have severe effects on technological systems, such as disturbances or even permanent damage of telecommunication and navigation satellites, telecommunication cables, and power grids. The main carriers of the ring current are positive ions, with energies from ∼1 keV to a few hundred keV, which are trapped by the geomagnetic field and undergo an azimuthal drift. The ring current is formed by the injection of ions originating in the solar wind and the terrestrial ionosphere into the inner magnetosphere. The injection process involves electric fields, associated with enhanced magnetospheric convection and/or magnetospheric substorms. The quiescent ring current is carried mainly by protons of predominantly solar wind origin, while active processes in geospace tend to increase the abundance (both absolute and relative) of O+ ions, which are of ionospheric origin. During intense geospace magnetic storms, the O+ abundance increases dramatically. This increase has been observed to occur concurrently with the rapid intensification of the ring current in the storm main phase and to result in O+ dominance around storm maximum. This compositional change can affect several dynamic processes, such as species-and energy-dependent charge-exchange and wave-particle scattering loss.  相似文献   
257.
磁暴期间甚低纬哨声的导管传播   总被引:4,自引:0,他引:4  
对磁暴期间甚低纬哨声导管传播的机理进行了初步的讨论,根据暴时低纬哨声的特点,认为暴时出现的扩展哨、多跳回波是沿东向扰动电场导致的场列电离增强路径传播的。对在东向电场影响下低纬F层的数值模拟表明,东向电场导致的场列电离增强结构有利于哨声的捕获和传播。  相似文献   
258.
By applying the cross-phase method and the amplitude-ratio method to magnetic field data obtained from two ground stations located close to each other, we can determine the frequency of the field line resonance (FLR), or the field line eigenfrequency, for the field line running through the midpoint of the two stations. From thus identified FLR frequency we can estimate the equatorial plasma mass density (ρ)(ρ) by using the T05s magnetospheric field model [Tsyganenko, N.A., Sitnov, M.I. Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms, J. Geophys. Res. 110, A03208, 2005] and the equation of Singer et al. [Singer, H.J., Southwood, D.J., Walker, R.J., Kivelson, M.G. Alfven wave resonances in a realistic magnetospheric magnetic field geometry, J. Geophys. Res. 86 (A6) 4589–4596, 1981].  相似文献   
259.
We investigate the north–south (N–S) asynchrony of the polar faculae and compare it with the hemispheric asynchrony of solar activity at low latitudes. We find that, (1) both the solar activity at high and low latitudes do not synchronously occur in the northern and southern hemispheres, there is phase shifts between the two hemispheres; (2) the N–S asynchrony of the polar faculae is a function of latitudes, implying that the asynchrony of the polar faculae between the two hemispheres is related to the hemispheric asymmetry and latitudinal distribution of the polar faculae.  相似文献   
260.
We describe a novel approach for determining the timing of the solar cycle and tracking its evolution relative to other cycles. This method also has predictive capability for forecasting the cycle “onset.” Based on current trends, we expect that Cycle 23 will be about 1 year longer than the previous two cycles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号