首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   260篇
  免费   42篇
  国内免费   7篇
航空   21篇
航天技术   147篇
航天   141篇
  2024年   3篇
  2023年   9篇
  2022年   12篇
  2021年   9篇
  2020年   8篇
  2019年   8篇
  2018年   10篇
  2017年   2篇
  2016年   4篇
  2015年   9篇
  2014年   31篇
  2013年   20篇
  2012年   15篇
  2011年   27篇
  2010年   18篇
  2009年   14篇
  2008年   31篇
  2007年   14篇
  2006年   12篇
  2005年   13篇
  2004年   11篇
  2003年   6篇
  2002年   5篇
  2001年   1篇
  2000年   8篇
  1999年   1篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
排序方式: 共有309条查询结果,搜索用时 468 毫秒
141.
Domes, an analog of the terrestrial shield volcanoes are one of the important volcanic features found on the lunar surface. Such volcanic features are windows to better understanding of the contrasting natures of lunar volcanism, giving an insight into the source and the nature of the basaltic magmas. Marius Hills Complex is one of the most important regions in the entire lunar surface for having a complex setting of volcanic constructs with an abundant number of volcanic features like domes, cones and rilles. As a part of initiation of the study of Marius Hills volcanism, an effusive dome located to the south of Rima Galilaei, near the contact of Imbrian and Eratosthenian geological units is taken for the present study. Inferring from the Terrain Mapping Camera-Digital Elevation Model (TMC-DEM), the morphometric parameters are estimated (350 m in height, 9.62 km in diameter), and accordingly the rheological parameters are also estimated. As the signatures of multiphase eruption are not clear geomorphologically and also in topography, the dome is assumed to evolved in monogenetic eruption. The causative dike parameters of the dome are estimated, which gives upper bounds of true values of the parameters. The estimated feeder dike length (150 km) and width (233 m) implies that the source region is lying most probably in the mantle portion of moon. The crater size frequency distribution (CSFD) is applied to determine the age of the particular dome and also the surrounding mare surface so as to better construct a stratigraphic correlation. It is found that dome belongs to oldest age unit of Marius Hills region while the surrounding units are relatively younger. Using Chandrayaan-I Moon Mineralogy Mapper (M3) data, the surface composition for the study area is also analysed. Thus, the morphometry, rheology, dike parameters, age determination and mineralogy are found to be in good agreement with results of the earlier studies. Such a study, covering all the domes and other volcanic features in Marius Hills using high resolution data sets will provide a clear and better understanding of the volcanic history of the region and the Oceanus Procellarum Basin as well. In such a study, the application potential of high resolution Chandrayaan-I TMC image and its DEM generated from the stereo data has been useful.  相似文献   
142.
This paper addresses lunar escape maneuvers of the first Chinese Sun–Earth L2 libration point mission by the CHANG'E-2 satellite, which is also the world's first satellite to reach the L2 point from a lunar orbit. The lunar escape maneuvers are heavily constrained by the remaining propellant and the condition of telemetry, track and command, among others. First, these constraints are analyzed and summarized to design a target L2 Lissajous orbit and an initial transfer trajectory. Second, the maneuver mathematical models are studied. The multilevel maneuver schemes which consist of phasing maneuvers and a final lunar escape maneuver are designed for actual operations. Based on the scheme analysis and comparison, the 2-maneuver scheme with a 5.3-h-period phasing orbit is ultimately selected. Finally, the mission status based on the scheme is presented and the control operation results are discussed in detail. The methodology in this paper is especially beneficial and applicable to a future multi-mission instance in the deep space exploration.  相似文献   
143.
为了更好解决复杂多约束下的在线轨迹优化问题,研究了一种基于联立求解框架进行轨迹优化的算法。此方法是一种直接法,先利用有限元正交配置法将状态和控制变量同时离散化,然后使用内点算法对离散得到的非线性命题进行求解。从平衡解的精度和计算代价的角度出发,引入了针对内点算法的收敛深度控制策略来改进方法的快速收敛性。最后,以某航天器月面上升段最优入轨任务为算例,验证了算法的精度和快速收敛性。  相似文献   
144.
准确的月球表面温度分布模型对于开展月球探测具有重要意义. 目前有关月球表面温 度模型还缺乏对完整月球表面温度分布的计算方法研究. 本文建立了一套计算完整月球表面温度的方法, 其中月球阳面温度采用Racca模型直接计算得到; 对于月球阴面, 将其沿纬度方向划分为若干区域, 每个区域的地表土壤采用一维非稳态热传导模型, 根据嫦娥三号着陆器太阳电池阵在轨环月阶段的温度数据, 修正得到月球表面土壤导热系数、密度及比热容, 通过数值计算求解一维非稳态热传导方程, 得出任意时刻月球阴面表面温度随时间的变化. 嫦娥三号着陆器太阳电池阵环月阶段热分析结果与在轨温度符合较好, 初步说明本文建立的完整月球表面温度计算方法正确可行. 基于本文方法计算得到整个月球表面温度分布, 进一步研究了极月轨道太阳电池阵外热流变化规律.   相似文献   
145.
This study explores the Design Reference Mission (DRM) architecture developed by Hufenbach et al. (2015) as a prelude to the release of the 2018 Global Exploration Roadmap (GER) developed by the International Space Exploration Coordination Group (ISECG). The focus of this study is the exploration of the south polar region of the Moon, a region that has not been visited by any human missions, yet exhibits a multitude of scientifically important locations – the investigation of which will address long standing questions in lunar research. This DRM architecture involves five landing sites (Malapert massif, South Pole/Shackleton crater, Schrödinger basin, Antoniadi crater, and the South Pole-Aitken basin center), to be visited in sequential years by crew, beginning in 2028. Two Lunar Electric Rovers (LER) are proposed to be tele-robotically operated between sites to rendez-vous with crew at the time of the next landing. With engineering parameters in mind we explore the feasibility of tele-robotic operation of these LERs between lunar landing sites, and identify potential high interest sampling locations en-route. Additionally, in-depth sample collection and return traverses are identified for each individual landing site across key geologic terrains that also detail crew Extra-Vehicular Activity (EVA). Exploration at and between landing sites is designed to address a suite of National Research Council (2007) scientific concepts.  相似文献   
146.
孙创  夏新林  任德鹏  邓湘金 《宇航学报》2009,30(6):2431-2435
针对双探针法测量月壤热物性过程,建立了探针与月壤组成的多层介质在太阳辐照加 热与月表辐射散热作用下的二维非稳态传热模型。通过数值模拟,分析了探针长度、直径、 中心间距和加热功率等因素对测量结果的影响。结果表明,若月壤导热系数在0.01W/
(m·K)左右,则月壤的弱导热性是双探针探测设计中需考虑的主要因素。在上述分析的基 础上,设计了双探针结构,对一导热性能较差的松散介质进行了地面测量实验,通过试错法 反演测量数据得到该介质的热扩散率与导热系数,为进一步应用研究提供了参考。  相似文献   
147.
At 4.56 Ga, the accretion of the slowly rotating Solar Nebula led to the formation of Sun and its Planets in the plane of disc of accretion. Moon was formed by accretion from a circumterrestrial disk of debris generated by the glancing angle impact of the young Earth by a Mars size planetary embryo at about 4.5 Ga at a distance of 15,000 km. The Moon since then has migrated to the present position of 384,400 km from the center of the Earth. In course of this outward migration it has slowed down the spin rate of Earth and caused the lengthening of diurnal day length from 5 h initially to 24 h presently. The basic mechanics of Earth–Moon System has been worked out and theoretical determination of lengthening of day curve is carried out. This theoretical lengthening of day curve is compared with the observed lengthening of day curve based on paleobotanical evidences, ancient tidalites and Australian Banded Iron Formation. There is a remarkable correspondence between the two curves except for intermittent deviations due to geographical and geophysical factors. Based on the theoretical curve of lengthening of day, an empirical formula for the lunar orbital radius expansion is determined. Based on this empirical formula, simulation software is developed that gives the correct evolution of the semi-major axis (a) of our Moon for any time span from the inception to the time chosen under study. For mathematical simplicity the system is considered to be a two body rotating system throughout its evolutionary history of 4.5 Gyrs. This simulation draws the Moon’s spiral trajectory from its inception to any subsequent epoch. The terminal epoch is an input to the simulation software to arrive at the spiral trajectory of the Moon from the inception to the given epoch. The basic mechanics of Earth–Moon System and this simulation can be generalized to lay the foundation of simulation software for any Planet–Satellite pair or any Sun-Planet pair in our Solar System or Star-Planet pair in any Extra-Solar System. The basic dynamics has been found to be valid for Star–Planet pair also. So this Simulation Methodology can as well be applied to study the migratory evolution of Gas Giants also.  相似文献   
148.
腿式月球着陆器静态稳定性研究   总被引:1,自引:0,他引:1  
采用稳定裕度作为描述静态稳定性的物理量,推导了腿式月球着陆器各主要部分的几何参数及相对位置关系参数与着陆器静态稳定性之间关系表达式;分析了各主要参量的变化对稳定性的影响;并着重比较了三腿式与四腿式构型对稳定性的影响。分析表明在同等条件下四腿式结构较三腿式结构更稳定,可为腿式月球着陆器的设计和优化提供一定的理论依据。  相似文献   
149.
SPACE CHEMISTRY RESEARCHES IN CHINA DURING 2000-2001   总被引:1,自引:0,他引:1  
Over the past two years, significant progress in space chemistry has been made in China. The research fields include meteorites, pre-solar materials, science researches of the moon, effects of the space debris on space environment, and heterogeneity of the Earth. Chinese Lunar Exploration Project Some studies are also dedicated to one important space mission "Chinese Lunar Exploration Project". In this paper, the main achievements are outlined, and some concepts and hypotheses are briefly revised.  相似文献   
150.
Results of numerical simulations are presented to examine the global gravity field recovery capability of the Japanese lunar exploration project SELENE (SELenological and ENgineering Explorer) which will be launched in 2007. New characteristics of the SELENE lunar gravimetry include 4-way satellite-to-satellite Doppler tracking of main orbiter and differential VLBI tracking of two small free-flier satellites. It is shown that the proposed satellite constellation will provide the first truly global satellite tracking data coverage. The expected results from these data are; (1) drastic reduction in far-side gravity error, (2) estimation of many gravity coefficients by the observation, not by a priori information, and (3) one order of magnitude improvement over existing gravity models for low-degree field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号