全文获取类型
收费全文 | 256篇 |
免费 | 56篇 |
国内免费 | 10篇 |
专业分类
航空 | 24篇 |
航天技术 | 157篇 |
航天 | 141篇 |
出版年
2024年 | 6篇 |
2023年 | 9篇 |
2022年 | 13篇 |
2021年 | 10篇 |
2020年 | 7篇 |
2019年 | 8篇 |
2018年 | 13篇 |
2017年 | 2篇 |
2016年 | 7篇 |
2015年 | 10篇 |
2014年 | 35篇 |
2013年 | 20篇 |
2012年 | 15篇 |
2011年 | 26篇 |
2010年 | 19篇 |
2009年 | 14篇 |
2008年 | 31篇 |
2007年 | 14篇 |
2006年 | 12篇 |
2005年 | 13篇 |
2004年 | 9篇 |
2003年 | 6篇 |
2002年 | 5篇 |
2001年 | 1篇 |
2000年 | 8篇 |
1999年 | 1篇 |
1998年 | 4篇 |
1997年 | 3篇 |
1996年 | 1篇 |
排序方式: 共有322条查询结果,搜索用时 12 毫秒
141.
Chang'E-1, the first lunar mission in China, was successfully launched on October 24,2007, which opened the prelude of China's Lunar Exploration Program. Later on, the Chang'E-2 and Chang'E-3 satellites were successfully launched in 2010 and 2013, respectively. In order to achieve the science objectives, various payloads boarded the spacecraft. The scientific data from these instruments were received by Beijing and Kunming ground stations simultaneously. Up to now, about 5.628 Terabytes of raw data were received totally. A series of research results has been achieved. This paper presents a brief introduction to the main scientific results and latest progress from Chang'E-3 mission. 相似文献
142.
S.M. Kopeikin E. Pavlis D. Pavlis V.A. Brumberg A. Escapa J. Getino A. Gusev J. Müller W.-T. Ni N. Petrova 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,42(8):1378-1390
Lunar laser ranging (LLR) measurements are crucial for advanced exploration of the laws of fundamental gravitational physics and geophysics as well as for future human and robotic missions to the Moon. The corner-cube reflectors (CCR) currently on the Moon require no power and still work perfectly since their installation during the project Apollo era. Current LLR technology allows us to measure distances to the Moon with a precision approaching 1 mm. As NASA pursues the vision of taking humans back to the Moon, new, more precise laser ranging applications will be demanded, including continuous tracking from more sites on Earth, placing new CCR arrays on the Moon, and possibly installing other devices such as transponders, etc. for multiple scientific and technical purposes. Since this effort involves humans in space, then in all situations the accuracy, fidelity, and robustness of the measurements, their adequate interpretation, and any products based on them, are of utmost importance. Successful achievement of this goal strongly demands further significant improvement of the theoretical model of the orbital and rotational dynamics of the Earth–Moon system. This model should inevitably be based on the theory of general relativity, fully incorporate the relevant geophysical processes, lunar librations, tides, and should rely upon the most recent standards and recommendations of the IAU for data analysis. This paper discusses methods and problems in developing such a mathematical model. The model will take into account all the classical and relativistic effects in the orbital and rotational motion of the Moon and Earth at the sub-centimeter level. The model is supposed to be implemented as a part of the computer code underlying NASA Goddard’s orbital analysis and geophysical parameter estimation package GEODYN and the ephemeris package PMOE 2003 of the Purple Mountain Observatory. The new model will allow us to navigate a spacecraft precisely to a location on the Moon. It will also greatly improve our understanding of the structure of the lunar interior and the nature of the physical interaction at the core–mantle interface layer. The new theory and upcoming millimeter LLR will give us the means to perform one of the most precise fundamental tests of general relativity in the solar system. 相似文献
143.
M. Kato S. SasakiK. Tanaka Y. IijimaY. Takizawa 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
The Japanese lunar mission SELENE (SELenological and ENgineering Explorer) has been in development to target launch scheduled 2007 summer by H-IIA rocket. The SELENE is starting final integration test after SAR (System Acceptance Review), SRR (System Reliability Review) and instrument environment test. The SELENE is a remote-sensing mission orbiting 100 km altitude of the Moon for nominal one year and extended some months to collect the data for studying the origin and evolution of the Moon. Fourteen instruments and experiment systems are preparing for studies of the Moon, in the Moon, and from the Moon; global element and mineral compositions, topological structure, gravity field of whole moon, and electromagnetic and particle environment of the Moon. The new data center SOAC (SELENE Operation and data Analysis Center) are completed to construct in JAXA Sagamihara campus, and end-to-end test will be carried out between SOAC and data downlink stations. 相似文献
144.
Koji Matsumoto Hideo Hanada Noriyuki Namiki Takahiro Iwata Sander Goossens Seiitsu Tsuruta Nobuyuki Kawano David D. Rowlands 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
Results of numerical simulations are presented to examine the global gravity field recovery capability of the Japanese lunar exploration project SELENE (SELenological and ENgineering Explorer) which will be launched in 2007. New characteristics of the SELENE lunar gravimetry include 4-way satellite-to-satellite Doppler tracking of main orbiter and differential VLBI tracking of two small free-flier satellites. It is shown that the proposed satellite constellation will provide the first truly global satellite tracking data coverage. The expected results from these data are; (1) drastic reduction in far-side gravity error, (2) estimation of many gravity coefficients by the observation, not by a priori information, and (3) one order of magnitude improvement over existing gravity models for low-degree field. 相似文献
145.
Lin Li 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
Retrieval of lunar soil composition is commonly achieved through optical remote sensing in which spectral characteristics of returned lunar samples are related to their constituents. Partial least squares (PLS) and principal component regression (PCR) were applied to the dataset characterized by the Lunar Soil Characterization Consortium (LSCC) to estimate the content of FeO, Al2O3 and TiO2 in the soils. The goal of this study was to test whether the conversion of reflectance to single scattering albedo (SSA) via Hapke’s radiative transfer model is able to improve the performance of PLS and PCR. Results from PLS and PCR modeling of SSA spectra indicate that the conversion does not necessarily improve the performance of PLS and PCR, and this depends on the chemical considered, the way to select the number of optimal factors, and how the data were pretreated. The conversion failed to accommodate the large deviation of highland samples with low FeO, TiO2 and high Al2O3. 相似文献
146.
The present status of the Japanese Penetrator Mission: LUNAR-A 总被引:1,自引:0,他引:1
H. Shiraishi S. TanakaA. Fujimura H. Hayakawa 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
The scientific objective of the LUNAR-A Japanese Penetrator Mission is to explore the lunar interior by seismic and heat-flow experiments. Two penetrators containing two-component seismometer and heat-flow probes will be deployed from a spacecraft onto the lunar surface, one on the nearside and the other on the farside of the moon. The data obtained by the penetrators will be transmitted to the ground station by way of the LUNAR-A mother spacecraft orbiting at an altitude of about 200 km. The seismic observations are expected to provide key data on the size of the lunar core, as well as data on the deep mantle structure. The heat-flow measurements at two different sites will also provide important data on the thermal structure and bulk concentrations of heat-generating elements in the Moon. These data will provide much stronger geophysical constraints on the origin and evolution of the Moon than has ever been obtained. The LUNAR-A mission was supposed to be launched in 2004. However, a malfunction of spacecraft subsystem and technical issues for penetrator system occurred during the course of the qualification level test. Therefore, further improvements and some modifications were considered to be required for reliability and robustness. The development of the mother spacecraft was temporarily suspended, while we have put a three-year program into effect to solve the penetrator technology issues. 相似文献
147.
148.
Gordon Chin Scott Brylow Marc Foote James Garvin Justin Kasper John Keller Maxim Litvak Igor Mitrofanov David Paige Keith Raney Mark Robinson Anton Sanin David Smith Harlan Spence Paul Spudis S. Alan Stern Maria Zuber 《Space Science Reviews》2007,129(4):391-419
NASA’s Lunar Precursor Robotic Program (LPRP), formulated in response to the President’s Vision for Space Exploration, will
execute a series of robotic missions that will pave the way for eventual permanent human presence on the Moon. The Lunar Reconnaissance
Orbiter (LRO) is first in this series of LPRP missions, and plans to launch in October of 2008 for at least one year of operation.
LRO will employ six individual instruments to produce accurate maps and high-resolution images of future landing sites, to
assess potential lunar resources, and to characterize the radiation environment. LRO will also test the feasibility of one
advanced technology demonstration package. The LRO payload includes: Lunar Orbiter Laser Altimeter (LOLA) which will determine
the global topography of the lunar surface at high resolution, measure landing site slopes, surface roughness, and search
for possible polar surface ice in shadowed regions, Lunar Reconnaissance Orbiter Camera (LROC) which will acquire targeted
narrow angle images of the lunar surface capable of resolving meter-scale features to support landing site selection, as well
as wide-angle images to characterize polar illumination conditions and to identify potential resources, Lunar Exploration
Neutron Detector (LEND) which will map the flux of neutrons from the lunar surface to search for evidence of water ice, and
will provide space radiation environment measurements that may be useful for future human exploration, Diviner Lunar Radiometer
Experiment (DLRE) which will chart the temperature of the entire lunar surface at approximately 300 meter horizontal resolution
to identify cold-traps and potential ice deposits, Lyman-Alpha Mapping Project (LAMP) which will map the entire lunar surface
in the far ultraviolet. LAMP will search for surface ice and frost in the polar regions and provide images of permanently
shadowed regions illuminated only by starlight. Cosmic Ray Telescope for the Effects of Radiation (CRaTER), which will investigate
the effect of galactic cosmic rays on tissue-equivalent plastics as a constraint on models of biological response to background
space radiation. The technology demonstration is an advanced radar (mini-RF) that will demonstrate X- and S-band radar imaging
and interferometry using light weight synthetic aperture radar. This paper will give an introduction to each of these instruments
and an overview of their objectives. 相似文献
149.
基于Zernike矩的高精度太阳图像质心提取算法 总被引:2,自引:0,他引:2
在基于太阳观测的月球车天文导航系统中,针对太阳传感器中图像噪声以及典型图像退化的不良影响,提出了一种基于Zernike矩的高精度太阳质心提取算法。采用Sobel算子进行边缘检测,Zernike矩重定位亚像素边缘,用最小二乘法拟合圆心。而当图像存在退化时,进行有效圆边缘点检测后,再用该法提取质心。从理论上分析了Zernike矩亚像素边缘检测对圆拟合法的改进作用。利用仿真图像和地表实验图像,将本文方法与传统的重心法、带阈值的重心法和圆拟合法进行了比较。结果表明,本文方法精度更高,具有更好的稳定性,可以对月球车天文导航精度的提高起良好作用。 相似文献
150.
面向浅层月壤的小型取样器研究 总被引:2,自引:0,他引:2
面向浅层月壤取样,设计一种重量轻、功耗低、收缩体积小的卷簧式可伸缩月壤取样器,分别给出取样臂的静力学和动力学模型,并进行有限元分析,研究取样臂几何参数对其最大推力的影响,给出最大推力的数学估计公式,研究取样臂为不同长度时取样器的振动模态,得出取样器谐振频率与取样臂长度呈幂函数关系。实验证明取样器能够在模拟月壤、水泥及黄沙样品表面以下10cm内定量取样,取样器在有、无振动时取样的比较实验表明振动法能够有效提高钻进效率、钻进深度和样品抛丢效率。理论分析、仿真及实验验证了取样器设计的合理性及振动法取样的有效性。 相似文献