首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   7篇
  国内免费   3篇
航空   14篇
航天技术   108篇
综合类   4篇
航天   10篇
  2024年   2篇
  2023年   1篇
  2022年   4篇
  2021年   7篇
  2020年   9篇
  2019年   6篇
  2018年   9篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   13篇
  2013年   11篇
  2012年   8篇
  2011年   8篇
  2010年   4篇
  2009年   4篇
  2008年   6篇
  2007年   2篇
  2006年   2篇
  2005年   5篇
  2003年   1篇
  2002年   2篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1995年   4篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1990年   3篇
  1987年   2篇
排序方式: 共有136条查询结果,搜索用时 453 毫秒
61.
A series of Power Virtual Height measurements (PVH) of radio echoes reflected from the ionosphere were acquired at a given frequency during the period 3–22 January 2008 with the purpose of studying the slow fading variations through time of the ionospheric channel. To obtain PVH data, an ionospheric vertical sounding system was suitably adapted to work at a single fixed frequency. PVH measurements were recorded between two routine ionospheric vertical soundings, providing a data type that enables evaluation of fading fluctuation through time. The time stability of the ionospheric layers is determined by analyzing the level of the received signal power within a chosen threshold. In this paper the fading behaviour and its characteristics are described, considering only temporal periodicity above 0.5 s. In a further analysis a relation is demonstrated between the recorded fading and the time stability of the signal within a fixed interval of values.  相似文献   
62.
Deep and frequent Global Positioning System (GPS) signal fading due to strong ionospheric scintillation is a major concern for GPS-guided aviation in equatorial areas during high solar activity. A GPS aviation receiver may lose carrier tracking lock under deep fading, and a lost channel cannot be used for position calculation until lock is reestablished. Hence, frequent loss of lock due to frequent fading can significantly reduce the availability of GPS aviation. However, the geometric diversity of the satellites can mitigate scintillation impact on GPS aviation depending on the correlation level of deep fades between satellites. This paper proposes a metric to measure the correlation level of two fading channels from the perspective of GPS aviation. Using this metric, the satellite-to-satellite correlation is studied based on real scintillation data. The low satellite-to-satellite correlation shown in this paper envisions notable availability benefit from the geometric diversity of satellites under strong scintillation. In addition, this paper proposes a way to generate correlated fading processes with arbitrary correlation coefficients. Using this correlated fading process model, the availability of Localizer Performance with Vertical guidance (LPV)-200 under severe scintillation scenarios is analyzed. The result emphasizes the importance of a fast reacquisition capability of an aviation receiver after a brief outage, which is not currently mandated by the aviation receiver performance standards.  相似文献   
63.
The occurrence characteristics of medium-scale travelling ionospheric disturbances (MSTIDs) were investigated using the Tasman International Geospace Environment Radar (TIGER). From the occurrence study of sea echoes, we found two maxima, one pre-noon and the other after noon. They are less obvious with increase of magnetic activities, and more obvious when Bz is northwards. It is suggested that this maxima were related to fore- and after-noon maxima in the distribution of net field-aligned currents flowing from the magnetosphere to the ionosphere, and that these two regions were sources of atmospheric gravity waves (AGWs) due to enhancement of Hall conductivities in the ionosphere. The Lorentz force is suggested to be a possible mechanism for the excitation of MSTIDs in the dayside ionosphere.  相似文献   
64.
与传统的射频链路相比,自由空间光通信FSOC(Free Space Optical Communication)系统是对现有无线通信技术的有力补充,为了抑制大气湍流对信号光束带来的相位噪声和强度波动,有必要对通信信道状况进行实时监测。首先介绍了基于光斑质心漂移的大气折射率结构常数测量方法,利用大口径接收靶面和窄带滤光片,结合实时图像处理算法,实现了大气折射率结构常数的全天候实时监测。将大气折射率结构常数和光强闪烁指数进行了比较分析,测量结果表明它们的包络之间具有很好的线性关系,进一步验证了实时测量系统的可靠性。  相似文献   
65.
The ionospheric effects induced by the September 2017 storm have been exceptional compared to other events in the solar cycle 24. This paper gathers results of the ionospheric observations at the European middle latitude station Pruhonice. It consists of evaluation of ionospheric vertical and oblique sounding, Digisonde drift measurement, and data obtained from the Continuous Doppler Sounding System. We observed strong ionospheric response with an unusual stratification of ionospheric layers, Large Scale Traveling ionospheric disturbances, changes in electron density, and increase and oscillations in plasma drift velocity.  相似文献   
66.
This paper presents a case study when due to the descending additional U-shaped trace on vertical incidence ionograms, increased critical frequency stabilizes. This corresponds to an ionospheric disturbance that moves toward the ionosonde and then stays overhead.Within a 2D model, traveling ionospheric disturbances (TIDs) are superimposed on the inverted background ionosphere. So ray tracing is used to obtain propagation paths through non-stratified ionosphere thus synthesizing the disturbed ionogram traces. Investigated are changes in the cusp shape caused by varying TID parameters. A cusp-fitting method to determine the TID amplitude, spatial scale, and horizontal drift velocity are shown.  相似文献   
67.
The radio telescope MEXART was developed to make observations of interplanetary scintillation (IPS) produced by large scale disturbances associated with solar events. In this work it is shown that on occasion there are disturbances in the ionosphere that are related with these events and which cannot only contaminate the IPS but actually be the main contribution to the observed oscillations. This was the case of the event of 15 December 2006 observed by MEXART, which presented clear scintillation. The total electron content (TEC) of the ionosphere above Mexico was calculated for the same period. It was found that the variations in TEC were associated with the scintillations detected by MEXART.  相似文献   
68.
Ionospheric variability impacts operational performances of a variety of technological systems, such as HF communication, Global Positioning System (GPS) navigation, and radar surveillance. The ionosphere is not only perturbed by geomagnetic inputs but is also influenced by atmospheric tides and other wave disturbances propagating from the troposphere to high altitudes. Atmospheric Gravity Waves (AGWs) excited by meteorological sources are one of the largest sources of mesoscale variability in the ionosphere. In this paper, Total Electron Content (TEC) data from networks of GPS receivers in the United States are analyzed to investigate AGWs in the ionosphere generated by convective thunderstorms. Two case studies of convectively generated gravity waves are presented. On April 4, 2014 two distinct large convective systems in Texas and Arkansas generated two sets of concentric AGWs that were observed in the ionosphere as Traveling Ionospheric Disturbances (TIDs). The period of the observed TIDs was 20.8 min, the horizontal wavelength was 182.4 km, and the horizontal phase speed was 146.4 m/s. The second case study shows TIDs generated from an extended squall line on December 23, 2015 stretching from the Gulf of Mexico to the Great Lakes in North America. Unlike the concentric wave features seen in the first case study, the extended squall line generated TIDs, which exhibited almost plane-parallel phase fronts. The TID period was 20.1 min, its horizontal wavelength was 209.6 km, and the horizontal phase speed was 180.1 m/s. The AGWs generated by both of these meteorological events have large vertical wavelength (>100 km), which are larger than the F2 layer thickness, thus allowing them to be discernible in the TEC dataset.  相似文献   
69.
The effects of the 15 May 2005 severe geomagnetic storm on the South African ionosphere are studied using ground-based and satellite observations. Ionospheric disturbances have less frequently been investigated over mid-latitude regions. Recently, a number of studies investigated their evolution and generation over these regions. This paper reports on the first investigation of travelling ionospheric disturbances (TIDs) over mid-latitude South Africa. Using global positioning system (GPS)-derived total electron content (TEC) variations from the South African network of dual frequency GPS receivers, we were able to examine the effects of the disturbance on the TEC. During this storm, two TEC enhancements were observed at low- and mid-latitudes: the first enhancement was observed between 30–45°S geomagnetic latitudes associated with equatorward neutral winds and the passage of a TID, while the second TEC enhancement is associated with a second TID. In addition, the F-region critical frequency (foF2) values observed at two ionosonde stations show response features that differ from those of the TEC during the disturbance period. The dissimilarity between the TEC and the foF2 suggests that two competing drivers may have existed, i.e., the westward electric field and equatorward neutral wind effects.  相似文献   
70.
This study presents results on the investigation of the diurnal, monthly and seasonal variability of Total Electron Content (TEC), phase (σΦσΦ) and amplitude (S4) scintillation indices over Ugandan (Low latitude) region. Scintillation Network Decision Aid (SCINDA) data was obtained from Makerere (0.34°N, 32.57°E) station, Uganda for two years (2011 and 2012). Data from two dual frequency GPS receivers at Mbarara (0.60°S, 30.74°E) and Entebbe (0.04°N, 32.44°E) was used to study TEC climatology during the same period of scintillation study. The results show that peak TEC values were recorded during the months of October–November, and the lowest values during the months of July–August. The diurnal peak of TEC occurs between 10:00 and 14:00 UT hours. Seasonally, the ascending and descending phases of TEC were observed during the equinoxes (March and September) and solstice (June and December), respectively. The scintillations observed during the study were classified as weak (0.1≤S4,σΦσΦ0.3) and strong (0.3<<S4,σΦσΦ1.0). The diurnal scintillation pattern showed peaks between 17:00 and 22:00 UT hour, while the seasonal pattern follows the TEC pattern mentioned above. Amplitude scintillation was more dominant than phase scintillation during the two years of the study. Scintillation peaks occur during the months of March–April and September–October, while the least scintillations occur during the months of June–July. Therefore, the contribution of this study is filling the gap in the current documentation of amplitude scintillation without phase scintillation over the Ugandan region. The scintillations observed have been attributed to wave-like structures which have periods of about 2–3 h, in the range of that of large scale travelling ionospheric disturbances (LSTIDs).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号