首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   359篇
  免费   16篇
航空   8篇
航天技术   361篇
航天   6篇
  2024年   1篇
  2023年   13篇
  2022年   2篇
  2021年   16篇
  2020年   15篇
  2019年   15篇
  2018年   26篇
  2016年   1篇
  2015年   3篇
  2014年   28篇
  2013年   40篇
  2012年   33篇
  2011年   29篇
  2010年   21篇
  2009年   33篇
  2008年   26篇
  2007年   9篇
  2006年   10篇
  2005年   11篇
  2004年   2篇
  2003年   5篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   5篇
  1994年   3篇
  1993年   3篇
  1992年   5篇
  1990年   4篇
排序方式: 共有375条查询结果,搜索用时 15 毫秒
51.
We have studied the time delay of ionospheric storms to geomagnetic storms at a low latitude station Taoyuan (25.02°N, 121.21°E), Taiwan using the Dst and TEC data during 126 geomagnetic storms from the year 2002 to 2014. In addition to the known local time dependence of the time delay, the statistics show that the time delay has significant seasonal characteristics, which can be explained within the framework of the seasonal characteristics of the ionospheric TEC. The data also show that there is no correlation between the time delay and the intensity of magnetic storms. As for the solar activity dependence of the time delay, the results show that there is no relationship between the time delay of positive storms and the solar activity, whereas the time delay of negative storms has weakly negative dependence on the solar activity, with correlation coefficient −0.41. Especially, there are two kinds of extreme events: pre-storm response events and long-time delay events. All of the pre-storm response events occurred during 15–20 LT, manifesting the Equator Ionospheric Anomaly (EIA) feature at Taoyuan. Moreover, the common features of the pre-storm response events suggest the storm sudden commencement (SSC) and weak geomagnetic disturbance before the main phase onset (MPO) of magnetic storms are two main possible causes of the pre-storm response events. By analyzing the geomagnetic indices during the events with long-time delay, we infer that this kind of events may not be caused by magnetic storms, and they might belong to ionospheric Q-disturbances.  相似文献   
52.
Three-dimensional (3-D) electron density matrices, computed in the Mediterranean area by the IRI climatological model and IRIEup and ISP nowcasting models, during some intense and severe geomagnetic-ionospheric storms, were ingested by the ray tracing software tool IONORT, to synthesize quasi-vertical ionograms. IRIEup model was run in different operational modes: (1) assimilating validated autoscaled electron density profiles only from a limited area which, in our case, is the Mediterranean sector (IRIEup_re(V) mode); (2) assimilating electron density profiles from a larger region including several stations spread across Europe: (a) without taking care of validating the autoscaled data in the assimilation process (IRIEup(NV)); (b) validating carefully the autoscaled electron density profiles before their assimilation (IRIEup(V)).The comparative analysis was carried out comparing IRI, IRIEup_re(V), ISP, IRIEup(NV), and IRIEup(V) foF2 synthesized values, with corresponding foF2 measurements autoscaled by ARTIST, and then validated, at the truth sites of Roquetes (40.80°N, 0.50°E, Spain), San Vito (40.60°N, 17.80°E, Italy), Athens (38.00°N, 23.50°E, Greece), and Nicosia, (35.03°N, 33.16°E, Cyprus). The outcomes demonstrate that: (1) IRIEup_re(V), performs better than ISP in the western Mediterranean (around Roquetes); (2) ISP performs slightly better than IRIEup_re(V) in the central part of Mediterranean (around Athens and San Vito); (3) ISP performance is better than the IRIEup_re(V) one in the eastern Mediterranean (around Nicosia); (4) IRIEup(NV) performance is worse than the IRIEup(V) one; (5) in the central Mediterranean area, IRIEup(V) performance is better than the IRIEup_re(V) one, and it is practically the same for the western and eastern sectors.Concerning the overall performance, nowcasting models proved to be considerably more reliable than the climatological IRI model to represent the ionosphere behaviour during geomagnetic-ionospheric storm conditions; ISP and IRIEup(V) provided the best performance, but neither of them has clearly prevailed over the other one.  相似文献   
53.
The extensive monitoring networks of Global Navigation Satellite System (GNSS) ionospheric scintillation have been established to continuously log observation data. Further, the amplitude scintillation index and the phase scintillation index, which are derived from scintillation observations, are anticipated to accommodate the accuracy requirement of both the user level and the monitoring station level. However, raw scintillation observations essentially measure superposed waveform impairments of GNSS signals propagating through ionosphere and troposphere. It implies that fluctuations of raw scintillation observations are caused by multiple factors from the entire radio propagation environment. Hence, it is crucial to characterize ionospheric scintillations from GNSS observation data. And the characterization is implemented through extracting fluctuations of raw observations merely induced by ionospheric scintillations. Designed to address this problem by means of Fourier filtering detrending, the present work investigates the influence of varying detrending cutoff frequencies on wavelet statistical energy and wavelet entropy distributions of scintillation data. It consequently derives criteria on the optimum detrending cutoff frequency for three types of raw amplitude scintillation data, which are classified by their wavelet energy distributions. Results of the present work verify that detrending with specific optimum cutoff frequencies rather than the fixed and universally applicable one renders the validity and credibility of characterizing ionospheric scintillations as the part of GNSS observation fluctuations purely induced by ionosphere electron density irregularities whose scale sizes are comparable with or smaller than the Fresnel scale.  相似文献   
54.
中纬电离层暴时形态的理论模式研究   总被引:1,自引:0,他引:1  
结合观测结果对中纬电离层暴时形态进行理论模式研究.分析了两次电离层暴变事件中影响其基本形态的原子-分子含量比、上部输运通量和中性风等因素的行为,发现在这两次具有不同特点的事件中,中性风较为平稳,而原子-分子含量比和耦合输运通量的相对作用则各不相同.   相似文献   
55.
利用宇宙噪声是均匀的。各向同性的背景电磁辐射的假设,对电子密度涨落空间分布波数谱为负幂律函数的电离层不规则结构,用射线光学方法导出了闪烁功率谱的表示式。与射电星和轨道人造卫星信标的电离层闪烁相比,减少了因相对运动弓队的变量。用数值计算方法研究了电离层不规则结构的结构参量Ly、ly、p、η对功率谱的影响。与实测资料比较,发现电离层吸收事件期间且Riometer记录的闪烁资料中,60%以上相应的不规则结构有Ly>103,η>η0(0.2<η0<0.5).   相似文献   
56.
Ionosphere response to severe geomagnetic storms that occurred in 2001–2003 was analyzed using data of global ionosphere maps (GIM), altimeter data from the Jason-1 and TOPEX satellites, and data of GPS receivers on-board CHAMP and SAC-C satellites. This allowed us to study in detail ionosphere redistribution due to geomagnetic storms, dayside ionospheric uplift and overall dayside TEC increase. It is shown that after the interplanetary magnetic field turns southward and intensifies, the crests of the equatorial ionization anomaly (EIA) travel poleward and the TEC value within the EIA area increases significantly (up to ∼50%). GPS data from the SAC-C satellite show that during the main phase of geomagnetic storms TEC values above the altitude of 715 km are 2–3 times higher than during undisturbed conditions. These effects of dayside ionospheric uplift occur owing to the “super-fountain effect” and last few hours while the enhanced interplanetary electric field impinged on the magnetopause.  相似文献   
57.
利用武汉电离层观象台研制的GPS TEC的现报方法及现报系统,对东亚地区GPS台网的观测数据进行处理分析,特别对2000年7月14-18日和2003年10月28日至11月1日两次特大磁暴期间的数据进行了对比考察,文中分析了两次磁暴间的电离层响应,得到对应不同磁暴时段电离层TEC的不同变化情况,着重揭示了TEC赤道异常峰的压缩和移动以及赤道异常随时间的压缩—反弹—恢复的过程,并结合高纬电离层的部分响应机制进行了说明,结果显示,两次磁暴期的电离层响应表现出了各自不同的特点,从而反映出因季节变化引起的高纬电离层暴时能量注入的不同而造成的全球性电离层扰动的不同形态,由此看出,磁暴期间电离层TEC的变化直接与太阳扰动发生的时间及其对高纬电离层的耦合有关,若短时期内连续发生多次磁暴,则电离层反应更加复杂,不能简单地当做单一磁暴叠加处理。  相似文献   
58.
In our study we analyze and compare the response and behavior of the ionospheric F2 and of the sporadic E-layer during three strong (i.e., Dst?<??100nT) individual geomagnetic storms from years 2012, 2013 and 2015, winter time period. The data was provided by the state-of the art digital ionosonde of the Széchenyi István Geophysical Observatory located at midlatitude, Nagycenk, Hungary (IAGA code: NCK, geomagnetic latitude: 46.17° geomagnetic longitude: 98.85°). The local time of the sudden commencement (SC) was used to characterize the type of the ionospheric storm (after Mendillo and Narvaez, 2010). This way two regular positive phase (RPP) ionospheric storms and one no-positive phase (NPP) storm have been analyzed. In all three cases a significant increase in electron density of the foF2 layer can be observed at dawn/early morning (around 6:00 UT, 07:00 LT). Also we can observe the fade-out of the ionospheric layers at night during the geomagnetically disturbed time periods. Our results suggest that the fade-out effect is not connected to the occurrence of the sporadic E-layers.  相似文献   
59.
In this study, different geomagnetic field models are compared in order to study the errors resulting from the representation of magnetic fields that affect the satellite attitude system. For this purpose, we used magnetometer data from two Low Earth Orbit (LEO) spacecraft and the geomagnetic models IGRF-12 (Thébault et al., 2015) and T89 (Tsyganenko, 1989) models to study the differences between the magnetic field components, strength and the angle between the predicted and observed vector magnetic fields. The comparisons were made during geomagnetically active and quiet days to see the effects of the geomagnetic storms and sub-storms on the predicted and observed magnetic fields and angles. The angles, in turn, are used to estimate the spacecraft attitude and hence, the differences between model and observations as well as between two models become important to determine and reduce the errors associated with the models under different space environment conditions. We show that the models differ from the observations even during the geomagnetically quiet times but the associated errors during the geomagnetically active times increase. We find that the T89 model gives closer predictions to the observations, especially during active times and the errors are smaller compared to the IGRF-12 model. The magnitude of the error in the angle under both environmental conditions was found to be less than 1°. For the first time, the geomagnetic models were used to address the effects of the near Earth space environment on the satellite attitude.  相似文献   
60.
利用宇宙线中子探测数据定性分析了地面宇宙线多台站之间的相互联系以及大磁暴与宇宙线之间的响应关系. 以Irkutsk和Oulu宇宙线台站为例, 运用小波去噪技术提高数据的稳定性. 结果表明, 相同世界时条件下, 两站宇宙线通量相关性在事件发生时较高; 而相同地方时条件下, 相关性则在平静期较高. 进一步采用相同地方时条件对不同宇宙线台站的通量在平静期和扰动期的相对变化进行分析, 选取2004年7月强地磁暴典型事例进行直观分析, 发现大地磁暴前Irkutsk和Oulu台站的宇宙线相对通量发生明显差异, 可以尝试作为强地磁暴宇宙线先兆特征. 通过对2001年3月至2005年5月的强磁暴和中强磁暴进行统计, 得到与强地磁暴相关的适当宇宙线相对差异阈值. 将得到的阈值对2005年9月至2011年12月所有强磁暴及中强磁暴进行验证, 总成功率达到87.5%, 误报率为35.7%, 结果较好.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号