首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   306篇
  免费   17篇
航空   6篇
航天技术   311篇
航天   6篇
  2024年   1篇
  2023年   12篇
  2022年   4篇
  2021年   16篇
  2020年   15篇
  2019年   13篇
  2018年   23篇
  2016年   1篇
  2015年   1篇
  2014年   23篇
  2013年   33篇
  2012年   31篇
  2011年   26篇
  2010年   18篇
  2009年   24篇
  2008年   20篇
  2007年   7篇
  2006年   6篇
  2005年   9篇
  2004年   1篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   5篇
  1994年   4篇
  1993年   3篇
  1992年   5篇
  1990年   3篇
排序方式: 共有323条查询结果,搜索用时 15 毫秒
61.
International Reference Ionosphere (IRI) model is the widely used empirical model for ionospheric predictions, especially TEC which is an important parameter for radio navigation and communication. The Fortran based IRI-2007 does not support real-time interactive visualization and debugging. Therefore, the source code is converted into Matlab and is validated for the purposes of this study. This facilitates easy representation of results and for near real-time implementation of IRI in the applications including spacecraft launching, now casting, pseudolite based navigation systems etc. In addition, the vertical delay results over the equatorial region derived from IRI and GPS data of three IGS stations namely Libreville (Garbon, Africa), Brasilia (Brazil, South America) and Hyderabad (India, Asia) are compared. As the IRI model does not account for plasmasphere TEC, the vertical delays are underestimated compared to vertical delays of GPS signals. Therefore, the model should be modified accordingly for precise TEC estimation.  相似文献   
62.
Ionospheric response to tropical cyclones (TCs) was estimated experimentally on the example of three powerful cyclones – KATRINA (23–31 August 2005), RITA (18–26 September 2005), and WILMA (15–25 October 2005). These TCs were active near the USA Atlantic coast. Investigation was based on Total Electron Content (TEC) data from the international network of two-frequency ground-based GPS receivers and the NCEP/NCAR Reanalysis data. We studied the spatial–temporal dynamics of wave TEC disturbances over two periods of ranges (02–20 min and 20–60 min). To select the ionospheric disturbances which were most likely to be associated with the cyclones, maps of TEC disturbances were compared with those of meteorological parameters.  相似文献   
63.
64.
Electron density distribution is the major determining parameter of the ionosphere. Computerized Ionospheric Tomography (CIT) is a method to reconstruct ionospheric electron density image by computing Total Electron Content (TEC) values from the recorded Global Positioning Satellite System (GPS) signals. Due to the multi-scale variability of the ionosphere and inherent biases and errors in the computation of TEC, CIT constitutes an underdetermined ill-posed inverse problem. In this study, a novel Singular Value Decomposition (SVD) based CIT reconstruction technique is proposed for the imaging of electron density in both space (latitude, longitude, altitude) and time. The underlying model is obtained from International Reference Ionosphere (IRI) and the necessary measurements are obtained from earth based and satellite based GPS recordings. Based on the IRI-2007 model, a basis is formed by SVD for the required location and the time of interest. Selecting the first few basis vectors corresponding to the most significant singular values, the 3-D CIT is formulated as a weighted least squares estimation problem of the basis coefficients. By providing significant regularization to the tomographic inversion problem with limited projections, the proposed technique provides robust and reliable 3-D reconstructions of ionospheric electron density.  相似文献   
65.
海南地区电离层不规则体纬向漂移速度的观测和研究   总被引:3,自引:2,他引:1  
根据中国海南富克(19.3°N,109.1°E)三点GPS观测系统2007年3月至11月的观测数据,利用互相关方法分析了三站闪烁信号的时间延迟,得出了不规则体纬向漂移的基本特征.在中国海南地区,闪烁主要发生在春秋季节,夜间不规则体的纬向漂移速度以东向为主,大小在50~150 m/s之间;平均东向漂移速度随时间呈下降趋势.另外,在闪烁刚发生时,不规则体纬向速度起伏较大,这可能与不规则体的随机起伏以及等离子体泡产生时垂直速度较大有关.中国海南地区不规则体纬向漂移速度的这些基本特征与低纬其他地区的测量结果较为一致.  相似文献   
66.
Employing SoftPAL receiver, amplitude variations of VLF transmitter signals NWC (19.8?kHz) and NPM (21.4?kHz) are analyzed at Agra station in India (Geograph. lat. 27.2°N, long. 78°E) ±15?days from five major earthquakes of magnitude M?=?6.9–8.5 occurred in Indian subcontinent during the years 2011–2013. We apply nighttime fluctuation (NF) method and show that in almost all cases the trend decreases and dispersion and NF increase on the same days corresponding to each earthquake about 11–15?days prior to the main shock. Assuming that the ionospheric perturbations are caused by atmospheric gravity waves (AGW), we also calculate AGW modulation index for each case and find its values increased on the days amplitude fluctuations take place. Its value is decreased in one case only where the perturbations may be attributed to penetration of seismogenic electric field.In order to support the above results we also present GPS-TEC data analyzed by us corresponding to three of the above earthquakes. We study the TEC anomalies (unusual enhancements) and find that in one case the precursory period is almost the same as that found in NF method.  相似文献   
67.
The present paper reports coordinated ionospheric irregularity measurements at optical as well as GPS wavelengths. Optical measurements were obtained from Tiny Ionospheric Photometer (TIP) sensors installed onboard the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites. GPS radio signals were obtained from a dual frequency GPS receiver operational at Calcutta (22.58°N, 88.38°E geographic; geomagnetic dip: 32.96°; 13.00°N, 161.63°E geomagnetic) under the SCIntillation Network Decision Aid (SCINDA) program. Calcutta is located near the northern crest of Equatorial Ionization Anomaly (EIA) in the Indian longitude sector. The observations were conducted during the unusually low and prolonged solar minima period of 2008–2010. During this period, four cases of post-sunset GPS scintillation were observed from Calcutta. Among those cases, simultaneous fluctuations in GPS Carrier-to-Noise ratios (C/No) and measured radiances from TIP over a common ionospheric volume were observed only on February 2, 2008 and September 25, 2008. Fluctuations observed in measured radiances (maximum 0.95 Rayleigh) from TIP due to ionospheric irregularities were found to correspond well with C/N0 fluctuations on the GPS links observed from Calcutta, such effects being noted even during late evening hours of 21:00–22:00 LT from locations around 40° magnetic dip. These measurements indicate the existence of electron density irregularities of scale sizes varying over several decades from 135.6 nm to 300–400 m well beyond the northern crest of the EIA in the Indian longitude sector during late evening hours even in the unusually low solar activity conditions.  相似文献   
68.
PPP (Precise Point Positioning) is a GNSS (Global Navigation Satellite Systems) positioning method that requires SSR (State Space Representation) corrections in order to provide solutions with an accuracy of centimetric level. The so-called RT-PPP (Real-time PPP) is possible thanks to real-time precise SSR products, for orbits and clocks, provided by IGS (International GNSS Service) and its associate analysis centers such as CNES (Centre National d'Etudes Spatiales). CNES SSR products also enable RT-PPP with integer ambiguity resolution. In GNSS related literature, PPP with ambiguity resolution (PPP-AR) in real-time is often referred as PPP-RTK (PPP – Real Time Kinematic). PPP-WIZARD (PPP - With Integer and Zero-difference Ambiguity Resolution Demonstrator) is a software that is made available by CNES. This software is capable of performing PPP-RTK. It estimates slant ionospheric delays and other GNSS positioning parameters. Since ionospheric effects are spatially correlated by GNSS data from active networks, it is possible to model and provide ionospheric delays for any position in the network coverage area. The prior knowledge ionospheric delays can reduce positioning convergence for PPP-RTK users. Real-time ionospheric models could benefit from highly precise ionospheric delays estimated in PPP-AR. In this study, we demonstrate that ionospheric delays obtained throughout PPP-AR estimation are actu ally ionospheric observables. Ionospheric observables are biased by an order of few meters caused by the receiver hardware biases. These biases prohibit the use of PPP-WIZARD ionospheric delays to produce ionospheric models. Receiver biases correction is essential to provide ionospheric delays while using PPP-AR based ionospheric observables. In this contribution, a method was implemented to estimate and mitigate receiver hardware biases influence on slant ionospheric observables from PPP-AR. In order to assess the proposed approach, PPP-AR data from 12 GNSS stations were processed over a two-month period (March and April 2018). A comparison between IGS ionospheric products and PPP-AR based ionospheric observables corrected for receiver biases, resulted in a mean of differences of −39 cm and 51 cm standard deviation. The results are consistent with the accuracy of the IGS ionospheric products, 2–8 TECU, considering that 1 TECU is ~16 cm in L1. In another analysis, a comparison of ionospheric delays from 5 pairs of short baselines GNSS stations found an agreement of 0.001 m in mean differences with 22 cm standard deviation after receiver biases were corrected. Therefore, the proposed solution is promising and could produce high quality (1–2 TECU) slant ionospheric delays. This product can be used in a large variety of modeling approaches, since ionospheric delays after correction are unbiased. These results indicate that the proposed strategy is promising, and could benefit applications that require accuracy of 1–2 TECU (~16–32 cm in L1).  相似文献   
69.
The seismo-ionospheric coupling is a hot topic of modern scientific research. One of the most reasonable mechanisms is the hypothesis of quasistatic electric field. With a preliminary analytical method, electric field in F2-region before Wenchuan earthquake was derived from the five lower latitude ground-based ionosondes: Lhasa (29.63°N, 91.17°E), Chongqing (29.50°N, 106.40°E), Kunming (25.00°N, 102.70°E), Guangzhou (23.15°N, 113.35°E) and Haikou (23.15°N, 110.35°E). The results show that there was an anomalous enhancement of electric field in F2-region close to the epicenter with maximal amplitude ∼2 mV/m (about 10 times of the background) at 15:00 LT on 9 May, which is in line with the amplitudes of anomalous electric field related to some previous earthquakes observed by satellites.  相似文献   
70.
The ionospheric effect remains one of the main factors limiting the accuracy of Global Navigation Satellite Systems (GNSS) including Galileo. For single frequency users, this contribution to the error budget will be mitigated by an algorithm based on the NeQuick global ionospheric model. This quick-run empirical model provides flexible solutions for combining ionospheric information obtained from various sources, from GNSS to ionosondes and topside sounders. Hence it constitutes an interesting simulation tool not only serving Galileo needs for mitigation of the ionospheric effect but also widening the use of new data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号