全文获取类型
收费全文 | 315篇 |
免费 | 55篇 |
专业分类
航空 | 7篇 |
航天技术 | 357篇 |
航天 | 6篇 |
出版年
2025年 | 1篇 |
2024年 | 2篇 |
2023年 | 15篇 |
2022年 | 8篇 |
2021年 | 20篇 |
2020年 | 17篇 |
2019年 | 18篇 |
2018年 | 29篇 |
2017年 | 6篇 |
2016年 | 4篇 |
2015年 | 4篇 |
2014年 | 25篇 |
2013年 | 35篇 |
2012年 | 33篇 |
2011年 | 26篇 |
2010年 | 18篇 |
2009年 | 27篇 |
2008年 | 20篇 |
2007年 | 7篇 |
2006年 | 6篇 |
2005年 | 9篇 |
2004年 | 1篇 |
2003年 | 3篇 |
2002年 | 4篇 |
2001年 | 2篇 |
2000年 | 3篇 |
1999年 | 1篇 |
1998年 | 3篇 |
1997年 | 1篇 |
1996年 | 2篇 |
1995年 | 5篇 |
1994年 | 4篇 |
1993年 | 3篇 |
1992年 | 5篇 |
1990年 | 3篇 |
排序方式: 共有370条查询结果,搜索用时 0 毫秒
31.
Tamara Gulyaeva Iwona Stanislawska 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
We present the spatial maps of the ionosphere–plasmasphere slab thickness τ (ratio of the vertical total electron content, TEC, to the F-region peak electron density, NmF2) during the intense ionospheric storms of October–November 2003. The model-assisted technology for estimate of the upper boundary of the ionosphere, hup, from the slab thickness components in the bottomside and topside ionosphere – eliminating the plasmasphere contribution of τ – is applied at latitudes 35° to 70°N and longitudes −10° to 40°E, from the data of 20 observatories of GPS-TEC and ionosonde networks, for selected days and hours of October and November 2003. The daily–hourly values of NmF2, hmF2 and TECgps are used as the constrained parameters for the International Reference Ionosphere extended to the plasmasphere, IRI-Plas, during the ionospheric quiet days, positive and negative storm phases for estimate of τ and hup. Good correlation has been found between the slab thickness and the upper boundary of the ionosphere for the intense ionospheric storms at October–November 2003. During the negative phase of the ionospheric storm, when the ionospheric plasma density is exhausted, the nighttime upper boundary of the ionosphere is greatly uplifted towards the magnetosphere tail, while the daytime upper boundary of the ionosphere is reduced below 500 km over the Earth. 相似文献
32.
33.
Emirant Bertillas Amabayo Lee-Anne McKinnell Pierre J. Cilliers 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The occurrence of mid-latitude spread F (SF) over South Africa has not been extensively studied since the installation of the DPS-4 digisondes in 1996 and 2000 at Grahamstown (33.32 °S, 26.50 °E) and Madimbo (22.38 °S, 30.88 °E) respectively. This study is intended to quantify the probability of occurrence of F region disturbances associated with SF over South Africa. A study was conducted using data for 8 years (2001–2008) over Madimbo (with a time resolution of 30 min) and Grahamstown (with a variable time resolution of 15 and 30 min). In this study, SF has been classified into frequency SF (FSF), range SF (RSF) and mixed SF (MSF). The SF events were identified by manually identifying ionograms showing SF and tabulating them according to type for further statistical analysis. The results show that the diurnal pattern of SF peaks strongly between 01:00 and 02:00 local time, LT (LT = UT + 2 h), where UT is the universal time. This pattern is true for all seasons and types of SF at Madimbo and Grahamstown in 2001 and 2005, except for RSF which had peaks during autumn and spring in 2001 at Madimbo. The probability of both MSF and FSF tends to increase with decreasing solar activity, with a peak in 2005 (a moderate solar activity period). The seasonal peaks of MSF and FSF are more frequent during winter months at both Madimbo and Grahamstown. In this study, SF was evident in ∼0.03% and ∼0.06% of the available ionograms at Madimbo and Grahamstown respectively during the 8 years. 相似文献
34.
Rajat Acharya Saibal Majumdar 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(6):1892-1904
The vertical ionospheric TEC values obtained from GAGAN grid based ionospheric delay correction values over the sea in the Indian equatorial region have been compared with the corresponding values derived from the International Reference Ionosphere model, IRI-2016. The objective of this work is to study the deviation of the vertical TEC derived from the IRI model from ground truths over the sea for different conditions. This will serve the basic intention of assessing the candidature of the IRI model as an alternative ionospheric correction model in navigation receivers in terms of accuracy. We have chosen different solar activity periods, seasons, geomagnetic conditions, locations etc. for our comparison and analysis. The TEC values by the IRI-2016 were compared with the actual measured values for the given conditions and errors were obtained. The measured vertical TEC values at the ionospheric grid points were derived from the GAGAN broadcast ionospheric delay data and used as reference. The IRI model with standard internal functions was used in estimating the TEC at the same ionospheric grid points. The errors in the model derived values are statistically analysed. Broadly, the results show that, for the Indian sector over the sea, the IRI model performs better on quiet days in off equatorial regions, particularly in the northern region. The overall performance degrades for other conditions with the model generally underestimating the true TEC values and most severely in the equatorial region. The performance is worst in this region for the disturbed days of the equinoctial period. The comparison study is also done with the TEC data measured directly by dual frequency GPS receivers. The results were found to be in general agreement with those obtained by comparing the model with GAGAN broadcast data as reference. This study will be useful in considering the IRI-2016 model for real time estimates of TEC as an alternative to the current parametric model in a satellite navigation receiver in absence of other options. 相似文献
35.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2023,71(5):2225-2239
Studying the relationship of total electron content (TEC) to solar or geomagnetic activities at different solar activity stages can provide a reference for ionospheric modeling and prediction. On the basis of solar activity indices, geomagnetic activity parameters, and ionospheric TEC data at different solar activity stages, this study analyzes the overall variation relationships of solar and geomagnetic activities with ionospheric TEC, the characteristics of the quasi-27-day periodic oscillations of the three variables at different stages, and the delayed TEC response of solar activity by conducting correlation analysis, Butterworth band-pass filtering, Fourier transform, and time lag analysis. The following results are obtained. (1) TEC exhibits a significant linear relationship with solar activity at different solar activity stages. The correlation coefficients |R| are arranged as follows: |R|EUV > |R|F10.7 > |R|sunspot number. No significant linear relationship exists between TEC and geomagnetic activity parameters (|R| < 0.35). (2) TEC, solar activity indices, and geomagnetic activity parameters have a period of 10.5 years. The maximum amplitudes of the Fourier spectrum for TEC and solar activity indices are nearly 27 days and those of geomagnetic activity parameters are nearly 27 and 13.5 days. (3) The deviations of the quasi-27-day significant periodic oscillation of TEC and solar activity indices are consistent. (4) No evident relationship exists between the quasi-27-day periodic oscillation of TEC and geomagnetic activity parameters. (5) The delay time of TEC for the 10.7 cm solar radio flux and extreme ultraviolet is always consistent, whereas that for sunspot number varies at each stage. 相似文献
36.
Zhigang Yuan Baiqi Ning Xiaohua Deng 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009,44(9):1013-1018
Based on observations of two ionosondes at Wuhan and Kokubunji, this paper presents effects of TADs on the daytime mid-latitude ionosphere during the intense geomagnetic storm on March 31, 2001. During a positive ionospheric storm, the start of the enhancement of the foF2 (F2 peak plasma frequency) at Wuhan lags that at Kokubunji by 15 min, which corresponds to the time interval of traveling atmospheric disturbances (TADs’) propagation from Kokubunji to Wuhan. Associated with the uplifting of the hmF2 (height of F2 peak) caused by TADs, it is observed by the two ionosondes that the F1 cusp becomes better developed. Therefore, during a geomagnetic storm, TADs originating from the auroral oval may have a strong influence on the shape of the electron density profile in the F1 region ionosphere at middle latitudes. It is highly likely that TADs are responsible for the evolution of the F1 cusp. 相似文献
37.
Massimo Materassi Lucilla Alfonsi Giorgiana De Franceschi Vincenzo Romano Cathryn Mitchell Paolo Spalla 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
The study of amplitude scintillation on GPS radio links is usually done after detrending the time series of the transmitted power so to define scintillations as the chaotic fluctuation around a unitary value. In a sense, the choice of how to detrend the time series is part of the definition of scintillation. 相似文献
38.
Chao-Song Huang J.C. Foster K. Yumoto J.L. Chau O. Veliz 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2407-2412
It is well known that the solar wind can significantly affect high-latitude ionospheric dynamics. However, the effects of the solar wind on the middle- and low-latitude ionosphere are much less studied. In this paper, we report observations that large perturbations in the middle- and low-latitude ionosphere are well correlated with solar wind variations. In one event, a significant (20–30%) decrease of the midlatitude ionospheric electron density over a large latitudinal range was related to a sudden drop in the solar wind pressure and a northward turning of the interplanetary magnetic field, and the density decrease became larger at lower latitudes. In another event, periodic perturbations in the dayside equatorial ionospheric E × B drift and electrojet were closely associated with variations in the interplanetary electric field. Since the solar wind is always changing with time, it can be a very important and common source of ionospheric perturbations at middle- and low-latitudes. The relationship between solar wind variations and significant ionospheric perturbations has important applications in space weather. 相似文献
39.
40.
A.M. Unewisse 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(3):1026-1038
Mean night-time peak power, Doppler shift and Doppler width of spread Doppler clutter (SDC) received by a high frequency backscatter radar located at Alice Springs, Australia from 2000 to 2018 is presented as a function of azimuth, sunspot number, time of year and frequency. The sampled region covers 90 degrees from West to North and includes the northern and southern equatorial anomalies.SDC peak power diminished across all azimuths during the winter solstice from around May to August (local winter) coinciding with the global decrease in F layer density due to the annual non-seasonal F2 anomaly but was generally constant during the equinoxes. In contrast, SDC Doppler width and inbound Doppler shift both increased during the equinoxes and exhibited azimuthal dependence related to the eastward equatorial plasma drift.SDC peak power increased with increasing sunspot number with frequency dependence during winter but not summer. Inbound Doppler shift and Doppler width increased with increasing sunspot number during equinox but not solstice with a strong dependence on azimuth and a weak dependence on frequency. 相似文献