首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   306篇
  免费   17篇
航空   6篇
航天技术   311篇
航天   6篇
  2024年   1篇
  2023年   12篇
  2022年   4篇
  2021年   16篇
  2020年   15篇
  2019年   13篇
  2018年   23篇
  2016年   1篇
  2015年   1篇
  2014年   23篇
  2013年   33篇
  2012年   31篇
  2011年   26篇
  2010年   18篇
  2009年   24篇
  2008年   20篇
  2007年   7篇
  2006年   6篇
  2005年   9篇
  2004年   1篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   5篇
  1994年   4篇
  1993年   3篇
  1992年   5篇
  1990年   3篇
排序方式: 共有323条查询结果,搜索用时 15 毫秒
131.
The ionospheric plasma density can be significantly disturbed during magnetic storms. In the conventional scenario of ionospheric storms, the negative storm phases with plasma density decreases are caused by neutral composition changes, and the positive storm phases with plasma density increases are often related to atmospheric gravity waves. However, recent studies show that the global redistribution of the ionospheric plasma is dominated primarily by electric fields during the first hours of magnetic storms. In this paper, we present the measurements of ionospheric disturbances by the DMSP satellites and GPS network during the magnetic storm on 6 April 2000. The DMSP measurements include the F region ion velocity and density at the altitude of ∼840 km, and the GPS receiver network provides total electron content (TEC) measurements. The storm-time ionospheric disturbances show the following characteristics. The plasma density is deeply depleted in a latitudinal range of ∼20° over the equatorial region in the evening sector, and the depletions represent plasma bubbles. The ionospheric plasma density at middle latitudes (20°–40° magnetic latitudes) is significantly increased. The dayside TEC is increased simultaneously over a large latitudinal range. An enhanced TEC band forms in the afternoon sector, goes through the cusp region, and enters the polar cap. All the observed ionospheric disturbances occur within 1–5 h from the storm sudden commencement. The observations suggest that penetration electric fields play a major role in the rapid generation of equatorial plasma bubbles and the simultaneous increases of the dayside TEC within the first 2 h during the storm main phase. The ionospheric disturbances at later times may be caused by the combination of penetration electric fields and neutral wind dynamo process.  相似文献   
132.
Simultaneous GPS observations from about 150 stations of European Permanent Network (EPN) have been used for studying dynamics of latitudinal profiles and structure of mid-latitude ionospheric trough (MIT). For the analyses, the TEC maps over Europe were created with high spatial and temporal resolution. The latitudinal profiles were produced from TEC maps with one-hour interval for geographic latitude range from 35N to 75N. The structure of latitudinal profiles relates to the occurrence of the ionospheric trough. The location of the trough depends on season, local time, and both geophysical and geomagnetic conditions. The trough structure in GPS-TEC demonstrates a smooth shape. The trough occurrence as a distinguished structure is more distinct during winter. The relation of TEC in the trough minimum to the equator and polar walls amounted to a factor of 2–4.  相似文献   
133.
The total electron content (TEC) in the equatorial and low-latitude ionosphere over Brazil was monitored in two dimensions by using 2011 data from the ground-based global navigation satellite system (GNSS) receiver network operated by the Brazilian Institute for Geography and Statistics. It was possible to monitor the spatial and temporal variations in TEC over Brazil continuously during both day and night with a temporal interval of 10 min and a spatial resolution of about 400 km. The daytime equatorial ionization anomaly (EIA) and post-sunset plasma enhancement (PS-EIA) were monitored over an area corresponding to a longitudinal extension of 4000 km in South America. Considerable day-to-day variation was observed in EIA and PS-EIA. A large latitudinal and longitudinal gradient of TEC indicated a significant ionospheric range error in application of the GNSS positioning system. Large-scale plasma bubbles after sunset were also mapped over a wide range. Depletions with longitudinally separated by more than 800 km were observed. They were extended by more than 2000 km along the magnetic field lines and drifted eastward. It is expected that 2-dimensional TEC mapping can serve as a useful tool for diagnosing ionospheric weather, such as temporal and spatial variation in the equatorial plasma trough and crest, and particularly for monitoring the dynamics of plasma bubbles.  相似文献   
134.
Global modeling of M(3000)F2 and hmF2 based on three alternative EOF (empirical orthogonal function) expansion methods is described briefly. Data used for the model construction is the monthly median hourly values of M(3000)F2 from the ionosonde/digisonde stations distributed around the world for the period of 1975–1985 and the hmF2 data of the same period converted from the measured M(3000)F2 based on the strong anti-correlation existing between them. Independent data of a low (1965) and a high (1970) solar activity year are used to validate the three alternative models based on different EOF expansion methods. Comparisons between the modeled results and observed data for both the low (1965) and high (1970) solar activity years showed good agreement for both M(3000)F2 and hmF2 parameters. Statistical analysis on the differences between model values and observed data showed that all the three alternative models (Model A, B and C) based on the different EOF expansion methods have better agreement with the observed data than the models currently used in IRI. All three alternative EOF based models have almost the same accuracy. Discussion on the preference of the three alternative EOF based models is given.  相似文献   
135.
This research is aiming for cycle slip detection and correction in case of ionospheric scintillation. Different from the normally discussed situation without ionospheric scintillation, ionospheric delay cannot be neglected due to abrupt ionosphere change. In this case, ionosphere-free testing quantities for cycle slip detection and correction have to be used.  相似文献   
136.
We propose a new parameter for quality evaluation of ionogram traces reconstructed by Autoscala. This parameter efficiently assesses the reliability of the automatic interpretation of ionospheric characteristics. Based on an extensive analysis of the data, the parameter values are statistically associated with the accuracy of foF2 data automatically scaled by Autoscala. Therefore, Autoscala will be improved by providing foF2 accuracy as supplementary output information.  相似文献   
137.
We have examined the ionospheric plasma irregularities that were recorded by using three ground-based receivers of the global positioning system (GPS) located at Brazilian longitudes during the period of a complete solar cycle, 1995–2005. The statistic results show that ionospheric irregularities are very easy to occur in December solstice months but rare to occur in June solstice months. Besides, the occurrence rates of irregularities in both December and June solstice months are little dependent on solar activity. However, in equinoctial months, the development of irregularities is obviously dependent on solar activity. There is a new finding in this study that if strong irregularities are distinguished from moderate ones, their occurrence rates would increase with solar activity during the December solstice months.  相似文献   
138.
Measurements of the line integral of the electron density along satellite-to-ground ray paths (i.e. TEC) using differential phase or Doppler of two coherent VHF/UHF signals transmitted from NNSS or GPS satellite networks have been used in the ionospheric tomography for mapping large-scale ionospheric images over region of interest. In this paper, we present theoretical studies of using a new signal source HF frequency in tomographic imaging. The initial phase problem inherent in the phase measurement can be eliminated by measuring Faraday rotations. Relative rotation on two adjacent HF frequencies is used to solve the ambiguity problem. A second-order approximation of the Faraday rotation incorporated with ray-tracing technique improves the reconstruction degradation due to ionospheric refractions. CASSIOPE is a multi-purpose small satellite that receives HF signals from ground radar facilities and it is scheduled for launch in early 2008. Simulations have demonstrated the potential applications of the ionospheric tomography in CASSIOPE/e-POP satellite experiment.  相似文献   
139.
This paper presents an analysis of a set of time series that represent foF2 disturbances during storm conditions, using clustering tools. The time series under study have been drawn from ionospheric observations obtained from eight European middle latitude ionosondes during a significant number of storm-time intervals and they are divided into eight groups according to the latitude (middle to low and middle to high) and the local time of the observation point at storm onset (afternoon, evening, morning, prenoon). The time series in each group have been analyzed using clustering-based methods. Specifically, each time series has been represented using two different ways of representation: the first is the raw representation while the second is through the parameters of the autoregressive (AR) model that best represents it. For each representation a hierarchy of clusterings is produced via the complete link algorithm. The two produced hierarchies are combined to a single one and the final clustering results are extracted from the produced hierarchy. The obtained results are in close agreement with the theoretical formulations concerning ionospheric storm effects at middle latitudes. In addition, they may be proved useful in the development of more accurate ionospheric forecasting methods.  相似文献   
140.
There is a lack of independent ionospheric data that can be used to validate GPS imaging results at mid latitudes over severe storm times. Doppler Orbitography and Radio positioning Integrated by Satellite (DORIS), a global network of dual-frequency ground to satellite observations, provides this missing data and here is employed as verification to show the accuracy of the ionospheric GPS images in terms of the total electron content (TEC). In this paper, the large-scale ionospheric structures that appeared during the strong geomagnetic storm of 20 November 2003 are reconstructed with a GPS tomographic algorithm, known as MIDAS, and validated with DORIS TEC measurements. The main trough shown in an extreme equatorward position in the ionospheric imaging over mainland Europe is confirmed by DORIS satellite measurements. Throughout the disturbed day, the variations of relative slant TECs between DORIS data and MIDAS results agree quite well, with the average of the mean differences about 2 TECu. We conclude that as a valuable supplement to GPS data, DORIS ionospheric measurements can be used to analyse TEC variations with a relatively high resolution, ∼10 s in time and tens of kilometres in space. This will be very helpful for identification of some highly dynamic structures in the ionosphere found at mid-latitudes, such as the main trough, TID (Travelling Ionospheric Disturbances) and SED (Storm Enhanced Density), and could be used as a valuable auxiliary data source in ionospheric imaging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号