首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   600篇
  免费   29篇
  国内免费   145篇
航空   243篇
航天技术   430篇
综合类   61篇
航天   40篇
  2024年   1篇
  2023年   17篇
  2022年   6篇
  2021年   34篇
  2020年   23篇
  2019年   24篇
  2018年   34篇
  2017年   5篇
  2016年   13篇
  2015年   6篇
  2014年   43篇
  2013年   49篇
  2012年   47篇
  2011年   43篇
  2010年   39篇
  2009年   52篇
  2008年   37篇
  2007年   18篇
  2006年   17篇
  2005年   17篇
  2004年   10篇
  2003年   13篇
  2002年   19篇
  2001年   13篇
  2000年   17篇
  1999年   19篇
  1998年   25篇
  1997年   13篇
  1996年   14篇
  1995年   31篇
  1994年   35篇
  1993年   9篇
  1992年   7篇
  1991年   3篇
  1990年   5篇
  1989年   3篇
  1988年   9篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
排序方式: 共有774条查询结果,搜索用时 312 毫秒
761.
《中国航空学报》2023,36(7):337-347
A new algebraic transition model is proposed based on a Structural Ensemble Dynamics (SED) theory of wall turbulence, for accurately predicting the hypersonic flow heat transfer on cone. The model defines the eddy viscosity in terms of a two-dimensional multi-regime distribution of a Stress Length (SL) function, and hence is named as SED-SL. This paper presents clear evidence of precise predictions of transition onset location and peak heat flux of a wide range of hypersonic Transitional Boundary Layers (TrBL) around straight cone at zero incidence, to an unprecedented accuracy as validated by over 70 measurements for varying five crucial influential factors (Mach number, temperature ratio, cone half angle, nose Reynolds number and noise level). The results demonstrate the universality of the postulated multi-regime similarity structure, in characterizing not only the spatial non-uniform distribution of the eddy viscosity in hypersonic TrBL on cone, but also the dependence of the transition onset location on the five influential factors. The latter yields a novel correlation formula for transition center Reynolds number which takes similar functional form as the SL function within the symmetry approach. It is concluded that the SED-SL model simulates TrBL around cone with uniformly high accuracy, and then points out to an optimistic alternative way to construct hypersonic transition model.  相似文献   
762.
In the docking process of aeroengine rotor parts, docking accuracy that indicates the gaps between the end faces is strictly required. A key issue is improving docking accuracy using automated docking equipment. In this paper, a systematic study is carried out on the error modeling and compensation of a novel six-degrees-of-freedom(6-DOF) docking equipment for aeroengine rotors. First, a new model for indicating the main indexes of docking accuracy is proposed. Then, the error model of a special...  相似文献   
763.
Global Navigation Satellite System’s (GNSS) positioning calculation is prone to ionospheric errors. Single frequency GNSS users receive ionospheric corrections through broadcast ionospheric models. Therefore, the accuracy of ionospheric models must be validated based on various geographic and geomagnetic conditions. In this work, an attempt is made to validate NeQuick2 electron density (Ne) using multiple sources of space-based and ground-based data at the Arabian Peninsula and for low solar activity conditions. These sources include space-based data from Swarm, DMSP and COSMIC-2 satellite constellations and ground-based data from GNSS receiver and the ionosonde. The period of this study is 1 year from October 2019 to September 2020. Analysis shows that the agreement between NeQuick2 and experimental Ne close to the peak density height depends on seasons and time of the day with the largest errors found in Autumn and during the daytime. NeQuick2 generally overestimates Ne during the daytime. During the early morning and evening hours, Ne estimates seem to be fairly accurate with slight underestimation in Winter and Spring. Estimation of slab thickness by NeQuick2 is found to be close to the values calculated using collocated ionosonde and GNSS receiver.  相似文献   
764.
Classic solar atmospheric models put the Chromosphere-Corona Transition Region (CCTR) at 2 Mm above the τ5000=1 level, whereas radiative MHD (rMHD) models place the CCTR in a wider range of heights. However, observational verification is scarce. In this work we review and discuss recent results from various instruments and spectral domains. In SDO and TRACE images spicules appear in emission in the 1600, 1700 and 304 Å bands and in absorption in the EUV bands; the latter is due to photo-ionization of H i and He i, which increases with wavelength. At the shortest available AIA wavelength and taking into account that the photospheric limb is 0.34 Mm above the τ5000=1 level, we found that CCTR emission starts at 3.7 Mm; extrapolating to λ=0, where there is no chromospheric absorption, we deduced a height of 3.0±0.5 Mm, which is above the value of 2.14 Mm of the Avrett and Loeser model. Another indicator of the extent of the chromosphere is the height of the network structures. Height differences produce a limbward shift of features with respect to the position of their counterparts in magnetograms. Using this approach, we measured heights of 0.14±0.04 Mm (at 1700 Å), 0.31±0.09 Mm (at 1600 Å) and 3.31±0.18 Mm (at 304 Å) for the center of the solar disk. A previously reported possible solar cycle variation is not confirmed. A third indicator is the position of the limb in the UV, where IRIS observations of the Mg ii triplet lines show that they extend up to 2.1 Mm above the 2832 Å limb, while AIA/SDO images give a limb height of 1.4±0.2 Mm (1600 Å) and 5.7±0.2 Mm (304 Å). Finally, ALMA mm-λ full-disk images provide useful diagnostics, though not very accurate, due to their relatively low resolution; values of 2.4±0.7 Mm at 1.26 mm and 4.2±2.5 Mm at 3 mm were obtained. Putting everything together, we conclude that the average chromosphere extends higher than homogeneous models predict, but within the range of rMHD models..  相似文献   
765.
Ionospheric delay is one of the significant error sources for global navigation satellite system (GNSS) positioning. GNSSs broadcast the coefficients of the ionospheric model to correct ionospheric delay for single-frequency users. A modified three-dimensional model (NeQuick G) based on the NeQuick climatological model is adopted for Galileo users. The NeQuick G model uses the effective ionization level (Az) instead of the sunspot number as the driving parameter. In this study, we introduce the ionospheric climate index (ICI) as a new driving parameter for the NeQuick model. In comparison, the ICI-driven NeQuick model has a better performance than the Az-driven NeQuick G model at both low and high latitudes. In addition, only one GNSS station at low latitudes is required to calculate the ICI, which would save maintenance costs and improve the efficiency of updating the broadcast coefficients. This model has potential application value for future upgrades of Galileo’s ionospheric broadcast model.  相似文献   
766.
We investigate the geomagnetic and ionospheric effects of seismic activity during 1954 Sun spotless days (SSL) from 1995 to 2020. Two subsets of earthquakes (EQ) are evaluated for 676 events observed with the depth D1 ≤ 30 km and 1278 events with D2 > 30 km and the total set SSL. Newly developed 1 h geomagnetic index Hpo and the ionospheric WEQ index are used for the comparisons with the daily peak earthquake. The ionosphere WEQ index is derived at the EQ epicenter from JPL GIM-TEC map within the cell of 2.5°×5°, in latitude φ and longitude λ surrounding the epicenter at radius of about 200 km. We use the method of superposed epoch with the zero epoch time t0 taken at EQ to extract peak values of Hpo and WEQ during t0-24 h ≤ t < t0 (preEQ) and t0 < t ≤ t0 + 24 h (postEQ). It is found that the magnitude of Hpo(t0) is less that the both peaks of Hpo(preEQ) and Hpo(postEQ) in 91 % of events independent of EQ’s depth. Similar effect is observed with the peak of the positive/negative ionosphere indices and the absolute values of |W(preEQ)| and |W(postEQ)| the both exceeding |WEQ| in 77 % of events. The seismic activity tends to increase towards the solar minimum when SSLs occur. Our results provide evidence that EQ-related geomagnetic and ionospheric activities experience decline of intensity at the time of EQ under SSL.  相似文献   
767.
Precise positioning based on Global Navigation Satellite System (GNSS) technique requires high accuracy ionospheric total electron content (TEC) correction models to account for the ionospheric path delay errors. We present an adjusted Spherical Harmonics Adding KrigING method (SHAKING) approach for regional ionospheric vertical TEC (VTEC) modeling in real time. In the proposed SHAKING method, the VTEC information over the sparse observation data area is extrapolated by the Adjusted Spherical Harmonic (ASH) function, and the boundary distortion in regional VTEC modeling is corrected by the stochastic VTEC estimated using Kriging interpolation. Using real-time GPS, GLONASS and BDS-2/3 data streams of the Crust Movement Observation Network of China (CMONOC), the SHAKING-based regional ionospheric VTEC maps are re-constructed over China and its boundary regions. Compared to GNSS VTECs derived from the independent stations, the quality of SHAKING solution improves by 13–31% and 6–33% with respect to the ASH-only solution during high and low geomagnetic periods, respectively. Compared to the inverse distance weighting (IDW) generated result, significant quality improved of SHAKING-based VTEC maps is also observed, especially over the edge areas with an improvement of 60–80%. Overall, the proposed SHAKING method exhibits notable advantage over the existing regional VTEC modeling techniques, which can be used for regional TEC modeling and associated high-precision positioning applications.  相似文献   
768.
Electron density measurements obtained from China Seismo‐Electromagnetic Satellite (CSES) and Swarm-B can play an increasingly important role in the study of ionosphere above F2 peak height. This study presented a comprehensive comparison of electron density products obtained from Langmuir probe mounted on CSES and Swarm-B with ionospheric tomography for a whole year period of 2019. CSES was fully compared with Swarm-B on a global scale, including both absolute and relative differences, and a new index called NFI was developed to better quantify the similarity between two latitudinal profiles of electron density. CSES and Swarm-B were then compared with tomography respectively in four regions, roughly located in America, Europe, Australia and China. Results indicated that CSES data are consistent with Swarm-B, as NFI values exceed 0.6 for most of the analyses. Tomography and Swarm-B were found to have a good agreement as their biases are less than 0.2 × 105 el/cm3 in general. For the comparison between CSES and tomography, the bias increased to around 0.6 × 105 el/cm3 but the standard deviation changed slightly, validating the underestimation of electron density by CSES. The spatiotemporal comparisons of CSES and Swarm-B with tomography showed that: 1) the differences in electron density were relatively low in middle latitudes and increased rapidly in the regions of equatorial ionization anomaly; 2) Swarm-B has a better consistent with tomography than CSES, but both are capable of detecting ionosphere anomalies such as midlatitude arcs; and 3) CSES and Swarm-B both can capture the seasonal changes of electron density, while their values are basically smaller than those from tomography in Spring and Summer months.  相似文献   
769.
《中国航空学报》2023,36(4):510-522
In this work, two-stage diffusion bonding of micro-duplex TC4 titanium alloy was carried out to study the flow behavior and constitutive models of the bonding joint and the base metal after the same thermal cycling during the hot forming process. Microstructure and mechanical properties test were used to verify the good quality of the equiaxed fine grain diffusion-welded TC4 alloy. Quasi-static tensile experiment was carried out at temperatures ranging from 750–900 °C and strain rates of 0.0001–0.1 s−1. The joint showed the weak dynamic recovery at strain rates of 0.01–0.1 s−1 and temperatures of 750–850 °C. At strain rates of 0.0001–0.001 s−1 and temperatures of 850–900 °C, the flow stress of joint presented steady-state characteristics. Different deformation conditions lead to the remarkable difference of dynamic softening performance between the joint and heat-treated base metal, but the flow stress in elastic and strain hardening stages exhibited similar behavior. The strain compensated Arrhenius-type constitutive models of TC4 joint and heat-treated base metal were developed respectively. The fifth-order polynomial functions between the material property correlation coefficients and strain were obtained. The models have shown good correlation, with correlation coefficient values of 0.984 and 0.99. The percentage average absolute relative error for the models were found to be 10% and 9.46%, respectively.  相似文献   
770.
Coronal mass ejection (CME) occurs when there is an abrupt release of a large amount of solar plasma, and this cloud of plasma released by the Sun has an intrinsic magnetic field. In addition, CMEs often follow solar flares (SF). The CME cloud travels outward from the Sun to the interplanetary medium and eventually hits the Earth’s system. One of the most significant aspects of space weather is the ionospheric response due to SF or CME. The direction of the interplanetary magnetic field, solar wind speed, and the number of particles are relevant parameters of the CME when it hits the Earth’s system. A geomagnetic storm is most geo-efficient when the plasma cloud has an interplanetary magnetic field southward and it is accompanied by an increase in the solar wind speed and particle number density. We investigated the ionospheric response (F-region) in the Brazilian and African sectors during a geomagnetic storm event on September 07–10, 2017, using magnetometer and GPS-TEC networks data. Positive ionospheric disturbances are observed in the VTEC during the disturbed period (September 07–08, 2017) over the Brazilian and African sectors. Also, two latitudinal chains of GPS-TEC stations from the equatorial region to low latitudes in the East and West Brazilian sectors and another chain in the East African sector are used to investigate the storm time behavior of the equatorial ionization anomaly (EIA). We noted that the EIA was disturbed in the American and African sectors during the main phase of the geomagnetic storm. Also, the Brazilian sector was more disturbed than the African sector.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号