首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   437篇
  免费   38篇
  国内免费   22篇
航空   78篇
航天技术   388篇
综合类   5篇
航天   26篇
  2024年   1篇
  2023年   19篇
  2022年   5篇
  2021年   19篇
  2020年   22篇
  2019年   23篇
  2018年   30篇
  2017年   10篇
  2016年   11篇
  2015年   8篇
  2014年   30篇
  2013年   46篇
  2012年   46篇
  2011年   35篇
  2010年   25篇
  2009年   30篇
  2008年   30篇
  2007年   13篇
  2006年   8篇
  2005年   11篇
  2004年   6篇
  2003年   4篇
  2002年   9篇
  2001年   3篇
  2000年   4篇
  1999年   1篇
  1998年   7篇
  1997年   3篇
  1996年   3篇
  1995年   5篇
  1994年   6篇
  1993年   7篇
  1992年   10篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
排序方式: 共有497条查询结果,搜索用时 15 毫秒
401.
The Quasi-Zenith Satellite System (QZSS) established by the Japan Aerospace Exploration Agency mainly serves the Asia-Pacific region and its surrounding areas. Currently, four in-orbit satellites provide services. Most users of GNSS in the mass market use single-frequency (SF) receivers owing to the low cost. Therefore, it is meaningful to analyze and evaluate the contribution of the QZSS to SF precise point positioning (PPP) of GPS/BDS/GLONASS/Galileo systems with the emergence of GNSS and QZSS. This study compares the performances of three SF PPP models, namely the GRoup and PHase Ionospheric Correction (GRAPHIC) model, GRAPHIC with code observation model, and an ionosphere-constrained model, and evaluated the contribution of the QZSS to the SF PPP of GPS/BDS/GLONASS/Galileo systems. Moreover, the influence of code bias on the SF PPP of the BDS system is also analyzed. A two-week dataset (DOY 013–026, 2019) from 10 stations of the MGEX network is selected for validation, and the results show that: (1) For cut-off elevation angles of 15, 20, and 25°, the convergence times for the static SF PPP of GLONASS + QZSS are reduced by 4.3, 30.8, and 12.7%, respectively, and the positioning accuracy is similar compared with that of the GLONASS system. Compared with the BDS single system, the convergence times for the static SF PPP of BDS + QZSS under 15 and 25° are reduced by 37.6 and 39.2%, the horizontal positioning accuracies are improved by 18.6 and 14.1%, and the vertical components are improved by 13.9 and 21.4%, respectively. At cut-off elevation angles of 15, 20, and 25°, the positioning accuracy and precision of GPS/BDS/GLONASS/Galileo + QZSS is similar to that of GPS/BDS/GLONASS/Galileo. And the convergence times are reduced by 7.4 and 4.3% at cut-off elevation angles of 20 and 25°, respectively. In imitating dynamic PPP, the QZSS significantly improves the positioning accuracy of BDS and GLONASS. However, QZSS has little effect on the GPS-only, Galileo-only and GPS/BDS/GLONASS/Galileo. (2) The code bias of BDS IGSO and MEO cannot be ignored in SF PPP. In static SF PPP, taking the frequency band of B1I whose multipath combination is the largest among the frequency bands as an example, the vertical component has a systematic bias of approximately 0.4–1.0 m. After correcting the code bias, the positioning error in the vertical component is lower than 0.2 m, and the positioning accuracy in the horizontal component are improved accordingly. (3) The SF PPP model with ionosphere constraints has a better convergence speed, while the positioning accuracy of the three models is nearly equal. Therefore the GRAPHIC model can be used to get good positioning accuracy in the absence of external ionosphere products, but its convergence speed is slower.  相似文献   
402.
《中国航空学报》2016,(2):470-478
Chang'E-3 spacecraft was orbiting the Moon from December 6–14, 2013, and very long baseline interferometry(VLBI) observations were performed to improve the accuracy of its orbit determination. In the process of recording VLBI raw data, 2 bits quantization was implemented.Interesting phenomenon was that signal-to-noise ratio(SNR) of each VLBI station experienced periodical change and had large variation on amplitude while in the Moon's orbit, whereas SNR kept in a stable level after Chang'E-3 landed on the Moon. Influence of varying elevation angle on SNR was analyzed and compensation of 2 bits quantization harmonics to SNR calculation was investigated. Most importantly, telescope system noise temperature increase caused by the Moon was computed along the time of Chang'E-3 orbiting the Moon, and well matched SNR changing trend in terms of correlation coefficients.  相似文献   
403.
Post-sunset ionospheric irregularities are common features of the equatorial ionosphere that affect radio communication and navigation systems; their triggering physical mechanism is not yet fully understood. Atmospheric gravity wave is considered as a seeding mechanism for the occurrence of ionospheric irregularities (Abdu et al., 2009). To understand the effects of atmospheric waves, characteristics of wavelike oscillation from ionospheric total electron content (TEC) fluctuation that can be obtained from superposition of different oscillation modes have been investigated. Decomposing fluctuating TEC into different oscillation modes and investigating oscillation characteristics of each component is also important to get insight about the characteristics of individual atmospheric waves that may cause TEC fluctuation. In this paper we have investigated characteristics of components of fluctuating TEC obtained from SCINDA GPS receiver installed at Bahir Dar, (geographic coordinate, 11.5°N, 37.6° E, and dip latitude of 2.5°N) Ethiopia during April 2012. First Empirical Mode Decomposition (EMD) has been applied to decompose TEC fluctuation into different oscillation modes that are known as Intrinsic Mode Function (IMF). Hilbert-Huang Transform (HHT) and Continuous Wavelet Transform (CWT) have been applied to investigate the characteristics of wave-like oscillations. Applying EMD on fluctuating vTEC corresponding to a GPS satellite, five components are found. Results from HHT and CWT have shown excellent agreement. In addition, it is found out that the median periods of oscillation of those five components are 9, 17, 47, 78, and 118 min. Of these periods, 17 and 47 min respectively are oscillation periods of components of TEC fluctuation with occurrence frequency of 92% and 91% that may be interpreted as the manifestation of two frequently occurring components of atmospheric gravity waves that are likely generated by the motion of solar terminator.  相似文献   
404.
F2层对地磁扰动的响应   总被引:3,自引:1,他引:2  
利用37个电离层垂直探测站1974-1986年的数据,采用f0F2与地磁ap指数相关分析的方法,首次得到一个太阳活动周期各年东亚-澳大利亚扇区,欧洲-非洲扇区和美洲-东太平洋扇区F2层对地磁扰动响应随地磁纬度的分布.结果指出,地磁高纬和中纬地区为负响应,低纬和赤道地区为正响应,大约在±30°附近换向.最大正响应在磁赤道附近,最大负响应在地磁纬度±50°附近,最大负响应的幅度大于最大正响应的幅度.存在明显的经度差别和南北半球不对称性.  相似文献   
405.
This brief report reviews the recent developments in ionospheric physics studies made by Chinese scientists. It covers areas from the numerical simulations and theoretical researches on ionospheric properties, ionospheric disturbances, space weather events in the ionosphere to ionospheric obserwtions.  相似文献   
406.
Recent measurements by the Solar EUV (Extreme Ultra Violet) Experiment (SEE) aboard the Thermosphere–Ionosphere–Mesosphere Energetics and Dynamics satellite (TIMED) provide solar EUV spectral irradiance with adequate spectral and temporal resolution, and thus the opportunity to use solar measurements directly in upper atmospheric general circulation models. Thermospheric neutral density is simulated with the NCAR Thermosphere–Ionosphere–Electrodynamic General Circulation Model (TIEGCM) using TIMED/SEE measurements and using the EUVAC solar proxy model. Neutral density is also calculated using the NRLMSISE-00 empirical model. These modeled densities are then compared to density measurements derived from satellite drag data. It is found that using measured solar irradiance in the general circulation model can improve density calculations compared to using the solar proxy model. It is also found that the general circulation model can improve upon the empirical model in simulating geomagnetic storm effects and the solar cycle variation of neutral density.  相似文献   
407.
In this paper, we present and discuss the response of the ionospheric F-region in the American sector during the intense geomagnetic storm which occurred on 24–25 October 2011. In this investigation ionospheric sounding data obtained of 23, 24, 25, and 26 October 2011 at Puerto Rico (United States), Jicamarca (Peru), Palmas, São José dos Campos (Brazil), and Port Stanley, are presented. Also, the GPS observations obtained at 12 stations in the equatorial, low-, mid- and high-mid-latitude regions in the American sector are presented. During the fast decrease of Dst (about ∼54 nT/h between 23:00 and 01:00 UT) on the night of 24–25 October (main phase), there is a prompt penetration of electric field of magnetospheric origin resulting an unusual uplifting of the F region at equatorial stations. On the night of 24–25 October 2011 (recovery phase) equatorial, low- and mid-latitude stations show h′F variations much larger than the average variations possibly associated with traveling ionospheric disturbances (TIDs) caused by Joule heating at high latitudes. The foF2 variations at mid-latitude stations and the GPS-VTEC observations at mid- and low-latitude stations show a positive ionospheric storm on the night of 24–25 October, possibly due to changes in the large-scale wind circulation. The foF2 observations at mid-latitude station and the GPS-VTEC observations at mid- and high-mid-latitude stations show a negative ionospheric storm on the night of 24–25 October, probably associated with an increase in the density of molecular nitrogen. During the daytime on 25 October, the variations in foF2 at mid-latitude stations show large negative ionospheric storm, possibly due to changes in the O/N2 ratio. On the night of 24–25, ionospheric plasma bubbles (equatorial irregularities that extended to the low- and mid-latitude regions) are observed at equatorial, low- and mid-latitude stations. Also, on the night of 25–26, ionospheric plasma bubbles are observed at equatorial and low-latitude regions.  相似文献   
408.
This study presents a statistical analysis of GPS L-band scintillation with data observed from July 2008 to March 2012 at the northern crest of equatorial anomaly stations in Guangzhou and Shenzhen of South China. The variations of the scintillation with local time, season, solar activity and duration of scintillation patches were investigated. The relationship between the scintillation and TEC depletion was also reported. Our results revealed that GPS scintillation occurred from 19:30 LT (pre-midnight) to 03:00 LT (post-midnight). During quiet solar activity years, the scintillation was only observed in pre-midnight hours of equinox months and patches durations were mostly less than 60 min. During high solar activity years, more scintillation occurred in the pre-midnight hours of equinox and winter months; and GPS scintillation started to occur in the post-midnight hours of summer and winter. The duration of scintillation patches extended to 180 min in high solar activity years. Solar activity had a larger effect to strong scintillations (S4 > 0.6) than to weak scintillations (0.6 ? S4 > 0.2). Strong scintillations were accompanied by TEC depletion especially in equinox months. We also discussed the relationship between TEC depletion and plasma bubble.  相似文献   
409.
The ionosphere is a dispersive medium for radio waves with the refractive index which is a function of frequency and total electron content (TEC). TEC has a strong diurnal variation in addition to monthly, seasonal and solar cycle variations and small and large scale irregularities. Dual frequency GPS observations can be utilized to obtain TEC and investigate its spatial and temporal variations. We here studied short term TEC variations over the Kingdom of Saudi Arabia (KSA). A regional GPS network is formed consisting of 16 sites in and around KSA. GPS observations, acquired between 1st and 11th February 2009, were processed on a daily basis by using the Bernese v5.0 software and IGS final products. The geometry-free zero difference smoothed code observables were used to obtain two hour interval snapshots of TEC and their RMS errors at 0.5 × 0.5 degree grid nodes and regional ionosphere models in a spherical harmonics expansion to degree and order six. The equatorial ionized anomaly (EIA) is recovered in the south of 20°N from 08:00 to 12:00 UT. We found that day-by-day TEC variation is more stable than the night time variation.  相似文献   
410.
ULF/ELF electric field perturbations in the ionosphere have been widely observed by the satellites. In this paper, we develop a method of Logarithm Electric Field Intensity (LEFI) to automatically distinguish this kind of disturbances based on the spectrum intensity and its damping exponent with frequency in electromagnetic signals. This method is applied to DEMETER data processing around Chile earthquakes with magnitude larger than 6.0. It is found that 2/3 earthquakes have shown obvious ULF/ELF electric field perturbations in this region. The temporal and spatial distributions of electron density and temperature were compared with that of electric field, which proved the existence of irregularities above epicentral area. Finally, the coupling mechanism of earthquake-ionosphere is discussed based on multi-parameter analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号