首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   354篇
  免费   10篇
  国内免费   2篇
航空   10篇
航天技术   349篇
综合类   1篇
航天   6篇
  2023年   7篇
  2022年   1篇
  2021年   16篇
  2020年   16篇
  2019年   16篇
  2018年   22篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   35篇
  2013年   41篇
  2012年   16篇
  2011年   41篇
  2010年   25篇
  2009年   42篇
  2008年   39篇
  2007年   3篇
  2006年   2篇
  2005年   6篇
  2004年   1篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   5篇
  1992年   4篇
  1990年   1篇
排序方式: 共有366条查询结果,搜索用时 15 毫秒
121.
This paper reviews various progresses on the ionospheric studies by the scientists in China during the last two years.The main contents concern the 4 aspects of the ionospheric re-search:(1) ionospheric weather and coupling with magnetosphere(polar and auroral ionosphere,ionospheric response to substorms,ionospheric storms);(2) mid-and low-latitude ionospheric clima-tology(ionospheric properties,yearly variations and solar activity dependence,long term variation);(3) ionospheric coupling with neutral atmosphere(gravity waves,tides,planetary waves,background upper atmosphere,and ionospheric response);and(4) ionospheric diagnostics(observation,modeling,and prediction).  相似文献   
122.
The IONOSAT project (from IONOspheric SATellites) is proposed by National Space Agency of Ukraine for First European Space Program as a part of Space Weather (SW) Program. As it is commonly accepted, Space Weather means the changes of the conditions on the Sun, in solar wind, magnetosphere and ionosphere which may affect the operation and reliability of on-board and ground technological systems and threaten human health. In this chain ionosphere is specific and integral part of SW formation. Moreover, namely in the ionosphere main part of the energy absorption of Sun-activated sporadic corpuscular and radiation fluxes takes places. The excitation of ionosphere by falling fluxes produces its “luminescence” in wide frequency band – from ULF waves till ultraviolet – and by this ionosphere works as an efficient “screen” or SW indicator.A goal of the proposed project is long-term spatial–temporal monitoring of main field and plasma parameters of ionosphere with aim to further develop fundamental conceptions of solar-terrestrial connections physics, nowcasting and forecast of SW, and diagnostics of natural and technogenic hazards with the help of scientific payload installed on-board a cluster of 3 low-Earth orbit (LEO) microsatellites (tentative launch date – 2012 year).The state of the project proposal and realization plans are discussed.  相似文献   
123.
A method for monitoring of sporadic formations in the lower ionosphere by use of the amplitude and phase variations of decimeter radio waves in the occultation trans-ionospheric link GPS satellite — LEO CHAMP satellite is described. Typical variations of the amplitude and phase of the occultation signal, caused by layered formations in the lower ionosphere, are considered. Parameters of sporadic structures measured during period of especially strong solar flashes from October 25 till November 9, 2003, are described. Results of statistical analysis of the occurrence frequency of sporadic layers, their altitude distribution, and thickness are presented. The electron density distribution in the lower ionosphere in the equatorial zone is estimated.  相似文献   
124.
通过分析2008年8月至2009年7月昆明站(25.6°N, 103.8°E) 中频(MF)雷达观测数据, 研究了太阳活动低年电离层D区电子密度的季节变化特性,发现D区电子密度主要呈现半年变化特征, 即在春秋季电子密度较大, 而在夏冬季则较小, 这与国际参考电离层(IRI)预测的年变化趋势不一致, 但与昆明站电离层测高仪的最低回波频率fmin的观测结果相符. 同时比较了D区电子密度半年变化与纬向风半年变化的关系, 发现二者之间保持了非常一致的变化趋势并对这种一致性的内在原因进行了分析.   相似文献   
125.
The main objective of the present investigation has been to compare the ionospheric parameters (NmF2 and hmF2) observed by two ground-based ionospheric sounders (one at PALMAS- located near the magnetic equator and the other at Sao Jose dos Campos-located in the low-latitude region) in the Brazilian sector with that by the satellite FORMOSAT-3/COSMIC radio occultation (RO) measurements during two geomagnetic storms which occurred in December 2006 and July 2009. It should be pointed out that in spite of increasing the latitude (to 10°) and longitude (to 20°) around the stations; we had very few common observations. It has been observed that both the peak electron density (NmF2) and peak height (hmF2) observed by two different techniques (space-borne COSMIC and ground-based ionosondes) during both the geomagnetic storm events compares fairly well (with high correlation coefficients) at the two stations in the Brazilian sector. It should be pointed out that due to equatorial spread F (ESF) in the first storm (December 2006) and no-reflections from the ionosphere during nighttime in the second storm (July 2009), we had virtually daytime data from the two ionosondes.  相似文献   
126.
火星电离层探测   总被引:1,自引:1,他引:1  
火星已经成为深空探测的重要目标之一, 登陆火星并在火星生存是人类探测火星的终极目标, 因此电离层是必须了解的火星电磁环境. 火星电离层探测包括直接探测和间接探测. 直接探测精度高, 有较高的空间分辨率, 但是观测时间短, 无法提供长期稳定的探测结果. 对火星电离层的间接探测结果主要来自无线电掩星探测和顶部雷达探测. 无线电掩星探测可实现对火星电离层整个电子密度剖面的长期稳定探测, 但其空间水平分辨率较低, 且可探测的电离层太阳天顶角范围受到地球与火星轨道的限制. 顶部雷达探测对火星电离层的探测具有很高的时间分辨率和空间分辨率, 且同样可进行长期稳定探测, 为火星电离层研究提供了最新的支持. 通过对火星电离层探测的基本方法及典型观测结果的分析, 提出通过几种探测方法适当结合的方式, 同时对火星电离层进行观测, 能够大大推进对火星电离层的研究.   相似文献   
127.
We discuss the specific features of the spatiotemporal radio tomography of ionospheric electron density based on the data from high orbiting global navigational satellite system (GNSS). The main peculiarities are four-dimensionality of the problem and essential incompleteness of input data. The approach suggested for the solution of this problem is based on the search for the solution with minimal Sobolev’s norm (the most smooth solution), which provides, in particular, smooth extension of the solution to the area where no input data is available. Methods and algorithms for the solution of the problem are developed, and the resolution of the proposed technique is estimated. Examples of global and regional radio tomographic imaging based on GNSS data are presented. The obtained results are compared with the data of ionosondes and with the results of radio tomography based on the radio transmissions from low-orbiting satellites.  相似文献   
128.
On December 11, 1967 at 05:21 LT, an immense earthquake of magnitude 6.7 struck Koyna, the Indian province of Maharashtra. Its epicenter was located at geographic latitude 17.37°N and longitude 73.75°E with depth of about 3 km. Ground based measurements show variation in the critical frequency of ionospheric F2 layer (foF2) before and after the shock. In the present study the behavior of F2-region of ionosphere has been examined over the equatorial and low latitudinal region ionosphere during the month of December 1967 around the time of Koyna earthquake. For this purpose, the ionospheric data collected with the help of ground-based ionosondes installed at Hyderabad (located close to the earthquake epicenter) Ahmedabad, Trichirapulli, Kodaikanal and Trivendrum have been utilized. The upper and lower bound of Interquartile range (IRQ) are constructed to monitor the variations in foF2 other than day-to-day and diurnal pattern for finding the seismo-ionospheric precursors. Some anomalous electron density variations are observed between post midnight hours to local pre-noon hours at each station. These anomalies are strongly time dependent and appeared a couple of days before the main shock. The period considered in this study comes under the quiet geomagnetic conditions. Hence, the observed anomalies (which are more than the usual day-to-day variability) over all stations are likely to be associated with this imminent earthquake. The possible mechanism to explain these anomalies is the effect of seismogenic electric field generated just above the surface of earth within the earthquake preparation zone well before the earthquake due to emission of radioactive particles and then propagated upward, which perturbs the F-region ionosphere.  相似文献   
129.
Since 1995, with the first GPS occultation mission on board Low Earth Orbiter (LEO) GPS/MET, inversion techniques were being applied to GPS occultation data to retrieve accurate worldwide distributed refractivity profiles, i.e. electron density profiles in the case of Ionosphere. Important points to guarantee the accuracy is to take into account horizontal gradients and topside electron content above the LEO orbit. This allows improving the accuracy from 20% to 50%, depending on the conditions, latitude and epoch regarding to Solar cycle as reported in previous works.  相似文献   
130.
We study the effects of space weather on the ionosphere and low Earth orbit (LEO) satellites’ orbital trajectory in equatorial, low- and mid-latitude (EQL, LLT and MLT) regions during (and around) the notable storms of October/November, 2003. We briefly review space weather effects on the thermosphere and ionosphere to demonstrate that such effects are also latitude-dependent and well established. Following the review we simulate the trend in variation of satellite’s orbital radius (r), mean height (h) and orbit decay rate (ODR) during 15 October–14 November 2003 in EQL, LLT and MLT. Nominal atmospheric drag on LEO satellite is usually enhanced by space weather or solar-induced variations in thermospheric temperature and density profile. To separate nominal orbit decay from solar-induced accelerated orbit decay, we compute r,h and ODR in three regimes viz. (i) excluding solar indices (or effect), where r=r0,h=h0 and ODR=ODR0 (ii) with mean value of solar indices for the interval, where r=rm,h=hm and ODR=ODRm and (iii) with actual daily values of solar indices for the interval (r,h and ODR). For a typical LEO satellite at h?=?450?km, we show that the total decay in r during the period is about 4.20?km, 3.90?km and 3.20?km in EQL, LLT and MLT respectively; the respective nominal decay (r0) is 0.40?km, 0.34?km and 0.22?km, while solar-induced orbital decay (rm) is about 3.80?km, 3.55?km and 2.95?km. h also varied in like manner. The respective nominal ODR0 is about 13.5?m/day, 11.2?m/day and 7.2?m/day, while solar-induced ODRm is about 124.3?m/day, 116.9?m/day and 97.3?m/day. We also show that severe geomagnetic storms can increase ODR by up to 117% (from daily mean value). However, the extent of space weather effects on LEO Satellite’s trajectory significantly depends on the ballistic co-efficient and orbit of the satellite, and phase of solar cycles, intensity and duration of driving (or influencing) solar event.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号