首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   389篇
  免费   17篇
  国内免费   7篇
航空   24篇
航天技术   379篇
综合类   2篇
航天   8篇
  2023年   7篇
  2022年   3篇
  2021年   20篇
  2020年   21篇
  2019年   16篇
  2018年   21篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   38篇
  2013年   40篇
  2012年   19篇
  2011年   42篇
  2010年   28篇
  2009年   44篇
  2008年   44篇
  2007年   7篇
  2006年   3篇
  2005年   8篇
  2004年   1篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  2000年   7篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1995年   3篇
  1994年   4篇
  1993年   6篇
  1992年   6篇
  1990年   3篇
  1988年   1篇
排序方式: 共有413条查询结果,搜索用时 62 毫秒
231.
内重力波传播的3维传输函数模式研究   总被引:2,自引:2,他引:0  
在考虑背景风场及大气耗散的条件下,建立了3维内重力波传输函数数值模式.分析了300 km高度3维传输函数在频率波数域的特性,并以近地面单位脉冲点源为激发源,得到了内重力波在3维空间中的时空分布.讨论了不同时空尺度地面方波源激发的内重力波在电离层高度的能量分布特征.结果表明,(1)对内重力波而言,背景大气相当于一个带通滤波器,只有波动周期和波长分别在15~30 min和200~400 km之间的重力波扰动最容易上传到300km高度;(2)在背景风场的作用下水平面上以同心圆扩散的波阵面以及垂直方向上成漏斗状的波阵面发生了变形,并且逆风方向比顺风方向更有利于声重力波由对流层向电离层高度传播;(3)300km高度对时间尺度和空间尺度分别在20~30 min和150~250 km之间的地面方波源响应的总能量最强.   相似文献   
232.
This study analyzed the occurrence of ionospheric irregularities over South Korea and Japan (mid-latitudes) during the years 2010–2015. The irregularities were quantified using the rate of change of total electron content (TEC) index (ROTI), which detects irregularities with scale sizes in the range of 400 m–2.5 km. The ROTI threshold for an ionospheric irregularity to have occurred was set as 0.1 TECU/min. Results showed that ionospheric irregularities mostly occur during night-time and around local noon-time in the seasons of spring and summer. In addition, the percentage of ionospheric irregularities had a high positive correlation with solar flux (F10.7) (r > 0.72). For the first time, we showed good correspondence between ionospheric irregularities measured by the ROTI index and sporadic E (Es). The median ROTI associated with ionospheric irregularities over a South Korea station (DAEJ) and a Japan station (KGNI) were 0.131 and 0.125 TECU/min, respectively. However, in severe cases of ionospheric irregularities, the ROTI values over DAEJ (KGNI) can reach 0.246 (0.217) and 0.314 (0.339) TECU/min during day and night, respectively. These critical ROTI values can be important in interpreting and monitoring ionospheric irregularity occurrence over South Korea and Japan.  相似文献   
233.
The article presents the results of the observation of a strong magnetic storm and two X-ray flares during the summer solstice in 2015, and their impact on the HF signals characteristics in ionospheric oblique sounding. It was found that the negative phase of the magnetic storm led to a strong degradation of the ionospheric channel, ultimately causing a long blackout on paths adjacent to subauroral latitudes. On mid-latitude paths, the decrease in 1FMOF reached ~50% relative to the average values for the quiet ionosphere. It is shown that the propagation conditions via the sporadic Es layer during the magnetic storm on a subauroral path are substantially better than those for F-mode propagation via the upper ionosphere. The delay of the sharp decrease in 1FMOF during the main phase of the magnetic storm allowed us to determine the propagation velocity of the negative phase disturbances (~100 m/s) from subauroral to mid-latitude ionosphere along two paths: Lovozero – Yoshkar-Ola and Cyprus – Nizhny Novgorod. It is shown that both the LOF and the signal/noise ratio averaged over the frequency band corresponding to the propagation mode via the sporadic Es layer correlate well with the auroral AE index. Using an over-the-horizon chirp radar with a bistatic configuration on the Cyprus – Rostov-on-Don path, we located small-scale scattering irregularities responsible for abnormal signals in the region of the equatorial boundary of the auroral oval.  相似文献   
234.
An examination of the high latitude performance of the bottomside and topside F-layer parameterizations of the NeQuick electron density model is presented using measurements from high latitude ionosonde and Incoherent Scatter Radar (ISR) facilities.For the bottomside, we present a comparison between modeled and measured B2Bot thickness parameter. In this comparison, it is seen that the use of the NeQuick parameterization at high latitudes results in significantly underestimated bottomside thicknesses, regularly exceeding 50%. We show that these errors can be attributed to two main issues in the NeQuick parameterization:(1) through the relationship relating foF2 and M3000F2 to the maximum derivative of F2 electron density, which is used to derive the bottomside thickness, and (2) through a fundamental inability of a constant thickness parameter, semi-Epstein shape function to fit the curvature of the high latitude F-region electron density profile.For the topside, a comparison is undertaken between the NeQuick topside thickness parameterization, using measured and CCIR-modeled ionospheric parameters, and that derived from fitting the NeQuick topside function to Incoherent Scatter Radar-measured topside electron density profiles. Through this comparison, we show that using CCIR-derived foF2 and M3000F2, used in both the NeQuick and IRI, results in significantly underestimated topside thickness during summer periods, overestimated thickness during winter periods, and an overall tendency to underestimate diurnal, seasonal, and solar cycle variability. These issues see no improvement through the use of measured foF2 and M(3000)F2 values. Such measured parameters result in a tendency for the parametrization to produce a declining trend in topside thickness with increasing solar activity, to produce damped seasonal variations, and to produce significantly overestimated topside thickness during winter periods.  相似文献   
235.
This paper investigated the performance of the latest International Reference Ionosphere model (IRI-2016) over that of IRI-2012 in predicting total electron content (TEC) at three different stations in the Indian region. The data used were Global Positioning System (GPS) data collected during the ascending phase of solar cycle 24 over three low-latitude stations in India namely; Bangalore (13.02°N Geographic latitude, 77.57°E Geographic longitude), Hyderabad (17.25°N Geographic latitude, 78.30°E Geographic longitude) and Surat (21.16°N Geographic latitude, 72.78°E Geographic longitude). Monthly, the seasonal and annual variability of GPS-TEC have been compared with those derived from International Reference Ionosphere IRI-2016 and IRI-2012 with two different options of topside electron density: NeQuick and IRI01-corr. It is observed that both versions of IRI (i.e., IRI-2012 and IRI-2016) predict the GPS-TEC with some deviations, the latest version of IRI (IRI-2016) predicted the TEC similar to those predicted by IRI-2012 for all the seasons at all stations except for morning hours (0500 LT to 1000?LT). This shows that the effect of the updated version is seen only during morning hours and also that there is no change in TEC values by IRI-2016 from those predicted by IRI-2012 for the rest of the time of the day in the Indian low latitude region. The semiannual variations in the daytime maximum values of TEC are clearly observed from both GPS and model-derived TEC values with two peaks around March-April and September-October months of each year. Further, the Correlation of TEC derived by IRI-2016 and IRI-2012 with EUV and F10.7 shows similar results. This shows that the solar input to the IRI-2016 is similar to IRI 2012. There is no significant difference observed in TEC, bottom-side thickness (B0) and shape (B1) parameter predictions by both the versions of the IRI model. However, a clear improvement is visible in hmF2 and NmF2 predictions by IRI-2016 to that by IRI-2012. The SHU-2015 option of the IRI-2016 gives a better prediction of NmF2 for all the months at low latitude station Ahmedabad compare to AMTB 2013.  相似文献   
236.
The trends in foF2 are analyzed based on the data of Juliusruh and Boulder ionospheric stations. It is shown that using the traditional solar activity index F10.7 leads to an impossible trend in foF2 when the data for the 24th solar activity cycle are included into the analysis. It is assumed that the F10.7 index does not describe correctly the solar ultraviolet radiation variations in that cycle. A correction of this index using the Rz (sunspot number) and Ly (intensity of the Lyman-α line in the solar spectrum) is performed, and it is shown that in that case reasonable values of the foF2 trends are obtained.  相似文献   
237.
We have solved the Maxwellian equations of electromagnetic waves which oscillate within the cavity formed in the lower ionosphere of Mars between 0 and 70?km. The electrical conductivity and Schumann Resonance (SR) frequencies are calculated in the lower ionosphere of Mars, in the presence of a major dust storm that occurred in Martian Year (MY) 25 at low latitude region (25°–35°S). It is found that the atmospheric conductivity reduced by one to two orders of magnitude in the presence of a dust storm. It represents a small dust layer at about 25–30?km altitudes where lightning can occur. We also found that the SR frequencies peak at?~18?km with values 19.9, 34.5 and 48.8?Hz for the modes l?=?1, 2 and 3, respectively, in the non-homogeneous medium. Our results indicate that practical or measurable values of SR are dependent on the altitudes.  相似文献   
238.
239.
The HF Doppler technique, a method of measurement of Doppler frequency shift of ionospheric signal, is one of the well-known and widely used techniques of ionosphere research. It allows investigation of various disturbances in the ionosphere. There are different sources of disturbances in the ionosphere such as geomagnetic storms, solar flashes, meteorological effects and atmospheric waves. The HF Doppler technique allows us to find out the influence of earthquakes, explosions and other processes on the ionosphere, which occurs near the Earth. HF Doppler technique has high sensitivity to small frequency variations and high time resolution but interpretation of results is difficult. In this paper, we attempt to use GPS data for Doppler measurements interpretation. Modeling of Doppler frequency shift variations with use of TEC allows separation of ionosphere disturbances of medium scale.  相似文献   
240.
In this work, we utilize thermospheric wind observations by the Fabry-Perot interferometers (FPI) from the Kelan (KL) station (38.7°N, 111.6°E, Magnetic Latitude: 28.9°N) and the Xinglong (XL) station (40.2°N, 117.4°E, Magnetic Latitude: 30.5°N) in central China during the St. Patrick’s Day storm (from Mar. 17 to Mar. 19) of 2015 to analyze thermospheric wind disturbances and compare observations with the Horizontal Wind Model 2007 (HWM07). The results reveal that the wind measurements at KL show very similar trends to those at XL. Large enhancements are seen in both the westward and equatorward winds after the severe geomagnetic storm occurred. The westward wind speed increased to a peak value of 75?m/s and the equatorward wind enhanced to a peak value of over 100?m/s. There also exist obvious poleward disturbances in the meridional winds during Mar. 17 to Mar. 19. According to the comparison with HWM07, there exist evident wind speed and temporal differences between FPI-winds and the model outputs in this severe geomagnetic storm. The discrepancies between the observations and HWM07 imply that the empirical model should be used carefully in wind disturbance forecast during large geomagnetic storms and more investigations between measurements and numerical models are necessary in future studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号