首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   1篇
  国内免费   2篇
航空   13篇
航天技术   78篇
航天   2篇
  2023年   3篇
  2022年   1篇
  2021年   6篇
  2020年   1篇
  2019年   8篇
  2018年   5篇
  2016年   1篇
  2014年   5篇
  2013年   6篇
  2012年   4篇
  2011年   6篇
  2010年   5篇
  2009年   9篇
  2008年   7篇
  2007年   3篇
  2006年   5篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2001年   1篇
  1999年   3篇
  1998年   1篇
  1994年   2篇
  1984年   2篇
排序方式: 共有93条查询结果,搜索用时 15 毫秒
31.
We present a joint analysis of longitude-temporal variations of ionospheric and geomagnetic parameters at middle and high latitudes in the Northern Hemisphere during the two severe magnetic storms in March and June 2015 by using data from the chains of magnetometers, ionosondes and GPS/GLONASS receivers. We identify the fixed longitudinal zones where the variability of the magnetic field is consistently high or low under quiet and disturbed geomagnetic conditions. The revealed longitudinal structure of the geomagnetic field variability in quiet geomagnetic conditions is caused by the discrepancy of the geographic and magnetic poles and by the spatial anomalies of different scales in the main magnetic field of the Earth. Variations of ionospheric parameters are shown to exhibit a pronounced longitudinal inhomogeneity with changing geomagnetic conditions. This inhomogeneity is associated with the longitudinal features of background and disturbed structure of the geomagnetic field. During the recovery phase of a storm, important role in dynamics of the mid-latitude ionosphere may belong to wave-like thermospheric disturbances of molecular gas, propagating westward for several days. Therefore, it is necessary to extend the time interval for studying the ionospheric effects of strong magnetic storms by a few days after the end of the magnetospheric source influence, while the disturbed regions in the thermosphere continues moving westward and causes the electron density decrease along the trajectories of propagation.  相似文献   
32.
The data on thermal fluctuations of the topside ionosphere have been measured by Retarding Potential Analyser (RPA) payload aboard the SROSS-C2 satellite over the Indian region for half of the solar cycle (1995–2000). The data on solar flare has been obtained from National Geophysical Data Center (NGDC) Boulder, Colorado (USA) and other solar indices (solar radio flux and sunspot number) were download from NGDC website. The ionospheric electron and ion temperatures show a consistent enhancement during the solar flares. The enhancement in the electron temperature is 28–92% and for ion temperature it is 18–39% compared to the normal day’s average temperature. The enhancement of ionospheric temperatures due to solar flares is correlated with the variation of sunspot and solar radio flux (F10.7cm). All the events studied in the present paper fall in the category of subflare with almost same intensity. The ionospheric electron and ion temperatures enhancement have been compared with the IRI model values.  相似文献   
33.
Recent advances in satellite techniques hold great potential for mapping global gravity wave (GW) processes at various altitudes. Poor understanding of small-scale GWs has been a major limitation to numerical climate and weather models for making reliable forecasts. Observations of short-scale features have important implication for validating and improving future high-resolution numerical models. This paper summarizes recent GW observations and sensitivities from several satellite instruments, including MLS, AMSU-A, AIRS, GPS, and CLAES. It is shown in an example that mountain waves with horizontal wavelengths as short as 30 km now can be observed by AIRS, reflecting the superior horizontal resolution in these modern satellite instruments. Our studies show that MLS, AMSU-A and AIRS observations reveal similar GW characteristics, with the observed variances correlated well with background winds. As a complementary technique, limb sounding instruments like CRISTA, CLAES, and GPS can detect GWs with better vertical but poorer horizontal resolutions. To resolve different parts of the broad GW spectrum, both satellite limb and nadir observing techniques are needed, and a better understanding of GW complexities requires joint analyses of these data and dedicated high-resolution model simulations.  相似文献   
34.
The Ionospheric Laboratory of Wuhan University is interested in upgrading its instrumentation replacing the WIOBSS (Wuhan Ionospheric Oblique Backscattering Sounding System) with a more flexible and automatic ionosonde. Then the updated ionosonde WMI (Wuhan Multifunctional Ionosonde) with automatic ionogram scaling has been developed to satisfy future research. The new system not only inherited some classic techniques from WIOBSS, such as the pulse compression and the coherent integration techniques, but also made great improvements in hardware design and software updating. This paper mainly introduces evolutions of this new ionosonde in both digital transceiver and digital signal processing domain, and also presents some observations.  相似文献   
35.
In survey series of unknown Earth orbiting objects, no a priori orbital elements are available. In surveys of wide field telescopes possibly many non-resolved object images are present on the single frames of the series. Reliable methods have to be found to associate the object images stemming from the same object with each other, so-called linking. The presence of cosmic ray events, so-called Cosmics, complicates reliable linking of non-resolved images. The tracklets of object images allow to extract exact positions for a first orbit determination.  相似文献   
36.
利用北斗GEO卫星观测数据直接计算电离层延迟。由于GEO卫星具有固定穿刺点和静地的特性,使得观测站监测电离层变化时可不考虑空间变化,并可进行连续不间断监测。通过分析北斗GEO卫星三种频率码伪距和载波相位观测值不同组合,选取B1&B2双频计算电离层延迟为最优组合,采用相位平滑伪距的方法计算电离层延迟TEC,相较其他电离层模型,该方法的优点是不会引入模型误差,可得到连续的高精度的电离层延迟监测结果。  相似文献   
37.
38.
The St. Patrick’s Day storm being the strongest geomagnetic storm of Solar Cycle 24 caused strong changes in ionospheric and thermospheric dynamics. The paper presents a study of vertical plasma transport in the ionosphere during the St. Patrick’s Day storm with using both observations and modeling. The observations give the ionospheric peak height obtained with the chirp vertical sounding ionosonde and the neutral wind velocities obtained with the Fabry-Perot interferometer. The ionospheric peak height is an indicator of the total vertical plasma transport, while meridional wind and electromagnetic drift are the two main drivers of the vertical plasma transport. The Global Self-consistent Model of the Thermosphere, Ionosphere, and Protonosphere used in this study gives the total set of ionospheric and thermospheric parameters including F2-layer peak height, neutral wind velocities, electric field, and neutral composition. The model/data comparison allows us to obtain two main results. The first one is an estimation of the model prediction possibilities under storm conditions. The second result is an indirect assessment of the neutral wind and electric field contribution into the changes in the ionospheric peak height in the case of the St. Patrick’s Day geomagnetic storm.  相似文献   
39.
Two ESA-funded feasibility studies that aimed to develop observation strategies, to propose suitable sensor architectures, and to assess the expected performance of an independent European Space Surveillance System were carried out during the last years. The French company ONERA led two study teams comprising a number of European companies.  相似文献   
40.
We propose a new parameter for quality evaluation of ionogram traces reconstructed by Autoscala. This parameter efficiently assesses the reliability of the automatic interpretation of ionospheric characteristics. Based on an extensive analysis of the data, the parameter values are statistically associated with the accuracy of foF2 data automatically scaled by Autoscala. Therefore, Autoscala will be improved by providing foF2 accuracy as supplementary output information.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号