首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   1篇
  国内免费   2篇
航空   13篇
航天技术   78篇
航天   2篇
  2023年   3篇
  2022年   1篇
  2021年   6篇
  2020年   1篇
  2019年   8篇
  2018年   5篇
  2016年   1篇
  2014年   5篇
  2013年   6篇
  2012年   4篇
  2011年   6篇
  2010年   5篇
  2009年   9篇
  2008年   7篇
  2007年   3篇
  2006年   5篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2001年   1篇
  1999年   3篇
  1998年   1篇
  1994年   2篇
  1984年   2篇
排序方式: 共有93条查询结果,搜索用时 15 毫秒
11.
In this research, it is presented the daytime amplitude scintillations recorded at VHF frequency (244 MHz) at an Indian low-latitude station, Waltair (17.7°N, 83.3°E) during seven continuous years (1997–2003). Contrary to the nighttime scintillation seasonal trends, the occurrence of daytime scintillations maximizes during summer followed by winter and the equinox seasons. The fade depths, scintillation indices and the patch durations of daytime scintillations are meager when compared with their nighttime counterparts. A co-located digital high frequency (HF) ionosonde radar confirms the presence of sporadic (Es) layers when daytime scintillations are observed. The presence of daytime scintillations is evident when the critical frequency of the Es-layer (foEs) is ≥4 MHz and Es-layers are characterized by a highly diffuse range spread Es echoes as can be seen on ionograms. It is surmised that the gradient drift instability (GDI) seems to be the possible mechanism for the generation of these daytime scintillations. It is quite likely that the spread Es-F-layer coupling is done through polarization electric fields (Ep) that develop inside the destabilized patches of sporadic E layers, which are mapped up to the F region along the field lines as to initiate the daytime scintillations through the GDI mechanism. Further, the presence of additional stratification of ionosphere F-layer, popularly known as the F3-layer, is observed on ionograms once the Es-layers and daytime scintillations are ceased.  相似文献   
12.
The BeiDou global navigation satellite system (BDS-3) has established the Ka-band inter-satellite link (ISL) to realize a two-way ranging function between satellites, which provides a new observation technology for the orbit determination of BDS-3 satellites. Therefore, this study presents a BDS satellite orbit determination model based on ground tracking station (GTS) observations and ISL ranging observations firstly to analyze the impact of the ISL ranging observations on the orbit determination of BDS-3 satellites. Subsequently, considering the data fusion processing, the variance component estimation (VCE) algorithm is applied to the parameter estimation process of the satellite orbit determination. Finally, using the measured data from China’s regional GTS observations and BDS-3 ISL ranging observations, the effects of ISL ranging observations on the orbit determination accuracy of BDS-3 satellites are analyzed. Moreover, the impact of the VCE algorithm on the fusion data processing is evaluated from the aspects of orbit determination accuracy, Ka-band hardware delay parameter stability, and ISL ranging observation residuals. The results show that for China’s regional GTSs, the addition of BDS-3 ISL ranging observations can significantly improve the orbit determination accuracy of BDS-3 satellites. The observed orbit determination accuracy of satellite radial component is improved from 48 cm to 4.1 cm. In addition, when the initial weight ratio between GTS observations and ISL ranging observations is not appropriate, the various indicators which include orbit determination accuracy, ISL hardware delay, and ISL observation residuals were observed to have improved after the adjustment of the VCE algorithm. These results validate the effectiveness of the VCE algorithm for the fusion data processing of the GTS observations and ISL ranging observations.  相似文献   
13.
The direct Bayesian admissible region approach is an a priori state free measurement association and initial orbit determination technique for optical tracks. In this paper, we test a hybrid approach that appends a least squares estimator to the direct Bayesian method on measurements taken at the Zimmerwald Observatory of the Astronomical Institute at the University of Bern. Over half of the association pairs agreed with conventional geometric track correlation and least squares techniques. The remaining pairs cast light on the fundamental limits of conducting tracklet association based solely on dynamical and geometrical information.  相似文献   
14.
In the present paper, an artificial neural network (ANN) based technique has been developed to estimate instantaneous rainfall by using brightness temperature from the IR sensors of SEVIRI radiometer, onboard Meteosat Second Generation (MSG) satellite. The study is carried out over north of Algeria. For estimation of rainfall, weight matrices of two ANNs namely MLP1 and MLP2 are developed. MLP1 is to identify raining or non-raining pixels. When rainy pixels are identified, then for those pixels, instantaneous rainfall is estimated by using MLP2. For identification of raining and non raining pixels, 7 input parameters from the IR sensors are utilized. Corresponding data of raining/non-raining pixels are taken from radar. For instantaneous rainfall estimation, 14 input parameters are utilized, where 7 parameters are information about raining pixels and 7 parameters are related with cloud features. The results obtained show the neural network performs reasonably well.  相似文献   
15.
Variations of the ionospheric weather W-index for two midlatitude observatories, namely, Grahamstown and Hermanus, and their conjugate counterpart locations in Africa are studied for a period from October 2010 to December 2011. The observatories are located in the longitude sector, which has consistent magnetic equator and geographic equator so that geomagnetic latitudes of the line of force are very close to the corresponding geographic latitudes providing opportunity to ignore the impact of the difference of the gravitational field and the geomagnetic field at the conjugate points on the ionosphere structure and dynamics. The ionosondes of Grahamstown and Hermanus provide data of the critical frequency (foF2), and Global Ionospheric Maps (GIM) provide the total electron content (TECgps) along the magnetic field line up to the conjugate point in the opposite hemisphere. The global model of the ionosphere, International Reference Ionosphere, extended to the plasmasphere altitude of 20,200 km (IRI-Plas) is used to deliver the F2 layer peak parameters from TECgps at the magnetic conjugate area. The evidence is obtained that the electron gas heated by day and cooled by night at the summer hemisphere as compared with the opposite features in the conjugate winter hemisphere testifies on a reversal of plasma fluxes along the magnetic field line by the solar terminator. The ionospheric weather W-index is derived from NmF2 (related with foF2) and TECgps data. It is found that symmetry of W-index behavior in the magnetic conjugate hemispheres is dominant for the equinoxes when plasma movement along the magnetic line of force is imposed on symmetrical background electron density and electron content. Asymmetry of the ionospheric storm effects is observed for solstices when the plasma diffuse down more slowly into the colder winter hemisphere than into the warmer summer hemisphere inducing either plasma increase (positive phase) or decrease (negative phase of W-index) in the ionospheric and plasmaspheric plasma density.  相似文献   
16.
The nighttime vertical E × B drifts velocities of the F2-region were inferred from the hourly hmF2 values obtained from ionosonde data over an African equatorial station, Ilorin (8.50oN, 4.68oE; dip lat. 2.95o) during period of low solar activity. For each season, the plasma drift Vz is characterized by an evening upward enhancement, then by a downward reversal at 1900 LT till around 0000 LT, except for June solstice. This was explained using the Rayleigh–Taylor (R-T) instability mechanism. The occasional drift differences in Vz obtained by inferred and direct measurement over Ilorin and Jicamarca, respectively are reflective of the importance of chemistry and divergent transport system due to both the E region electric and magnetic fields instead of simple motions. The pre-reversal enhancement (PRE) magnitude is higher during the equinoctial months than the solsticial months over Jicamarca, highest during December solstice and the equinoctial months over Ilorin, suggesting the dominance of higher E × B fountain during equinoxes at both stations. The lowest PRE magnitude was in June solstice. The appearance of post-noon peak in NmF2 around 1700 LT is highest during the equinoctial months and lowest during the solsticial period. A general sharp drop in NmF2 around 1800 LT is distinct immediately after sunset, lowest during June solstice and highest in March equinox. Our result suggests that between 0930 and 2100 LT, the general theory that vertical drifts obtained by digisonde measurements only match the E × B drift if the F layer is higher than 300 km is reliable, but does not hold for the nighttime period of 2200–0600 LT under condition of solar minima. Hence, the condition may not be sufficient for the representation of vertical plasma drift at nighttime during solar minima. This assertion may still be tentative, as more equatorial stations needed to be studied for better confirmation.  相似文献   
17.
Forty years passed since the optical identification of the first isolated neutron star (INS), the Crab pulsar. 25 INSs have been now identified in the optical (O), near-ultraviolet (nUV), or near-infrared (nIR), hereafter UVOIR, including rotation-powered pulsars (RPPs), magnetars, and X-ray-dim INSs (XDINSs), while deep investigations have been carried out for compact central objects (CCOs), Rotating RAdio transients (RRATs), and high-magnetic field radio pulsars (HBRPs). In this review I describe the status of UVOIR observations of INSs, their emission properties, and I present the results from recent observations.  相似文献   
18.
Median values of ionosonde hF data acquired at Ibadan (Geographic:7.4°N, 3.9°E, Magnetic: dip 6°S, and magnetic declination, 3°W), Nigeria, West Africa, have been used to determine vertical ion drift (electric field) characteristics in the postsunset ionosphere in the African region during a time of high solar activity (average F10.7 −208). The database spans from January and December 1958 during the era of International Geophysical Year (IGY) for geomagnetic quiet conditions. Bimonthly averaged diurnal variations patterns are very similar, but differ significantly in magnitude and in the evening reversal times. Also, monthly variations of F-region vertical ion drift reversal times inferred from the time of hF maximum indicates early reversal during equinoxes and December solstice months except for the month of April. Late reversal is observed during the June solstice months. The equatorial evening prereversal enhancement in vertical ion drift (Vzp) occurs largely near 1900 LT with typical values 20–45 m/s. Comparison of Ibadan ionosonde Vzp with the values of prereversal peak velocity reported for Jicamarca (South America), Kodaikanal (India), and Scherliess and Fejer global model show considerable disparity. The changes of postsunset peak in virtual height of F-layer (hFP) with prereversal velocity peak Vzp are anti-correlated. Investigation of solar effects on monthly values of Vzp and hFP revealed that these parameters are independent of monthly averaged solar flux intensity during quiet-time sunspot maximum conditions.  相似文献   
19.
Geosynchronous Earth Orbit (GEO) satellites are widely used because of their unique characteristics of high-orbit and remaining permanently in the same area of the sky. Precise monitoring of GEO satellites can provide a key reference for the judgment of satellite operation status, the capture and identification of targets, and the analysis of collision warning. The observation using ground-based optical telescopes plays an important role in the field of monitoring GEO targets. Different from distant celestial bodies, there is a relative movement between the GEO target and the background reference stars, which makes the conventional observation method limited for long focal length telescopes. CCD drift-scan photoelectric technique is applied on monitoring GEO targets. In the case of parking the telescope, the good round images of the background reference stars and the GEO target at the same sky region can be obtained through the alternating observation of CCD drift-scan mode and CCD stare mode, so as to improve the precision of celestial positioning for the GEO target. Observation experiments of GEO targets were carried out with 1.56-meter telescope of Shanghai Astronomical Observatory. The results show that the application of CCD drift-scan photoelectric technique makes the precision of observing the GEO target reach the level of 0.2″, which gives full play to the advantage of the long focal length of the telescope. The effect of orbit improvement based on multi-pass of observations is obvious and the prediction precision of extrapolating to 72-h is in the order of several arc seconds in azimuth and elevation.  相似文献   
20.
In a further study of sporadic emission from pulsars we find evidence for short lived intense emission from the Crab pulsar.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号