全文获取类型
收费全文 | 259篇 |
免费 | 86篇 |
国内免费 | 80篇 |
专业分类
航空 | 183篇 |
航天技术 | 120篇 |
综合类 | 17篇 |
航天 | 105篇 |
出版年
2024年 | 1篇 |
2023年 | 8篇 |
2022年 | 16篇 |
2021年 | 19篇 |
2020年 | 17篇 |
2019年 | 13篇 |
2018年 | 11篇 |
2017年 | 15篇 |
2016年 | 10篇 |
2015年 | 16篇 |
2014年 | 19篇 |
2013年 | 12篇 |
2012年 | 23篇 |
2011年 | 23篇 |
2010年 | 15篇 |
2009年 | 25篇 |
2008年 | 25篇 |
2007年 | 12篇 |
2006年 | 17篇 |
2005年 | 18篇 |
2004年 | 6篇 |
2003年 | 12篇 |
2002年 | 13篇 |
2001年 | 13篇 |
2000年 | 10篇 |
1999年 | 15篇 |
1998年 | 8篇 |
1997年 | 5篇 |
1996年 | 5篇 |
1995年 | 3篇 |
1994年 | 5篇 |
1993年 | 1篇 |
1992年 | 3篇 |
1991年 | 3篇 |
1990年 | 6篇 |
1989年 | 1篇 |
1987年 | 1篇 |
排序方式: 共有425条查询结果,搜索用时 15 毫秒
321.
射流预冷涡轮基发动机在高空高马赫数工作时对冷却水和液氧具有迫切的需求。本文以气液相变冷却机制为切入点,开展高空模拟试验进气预冷段内水-液氧射流冷却的数值分析,考虑真实雾滴颗粒运动的热力现象,基于欧拉-拉格朗日多相流方法解析气液两相热质传输过程,分析水-液氧混合射流对高马赫数涡轮发动机预冷段内流动及换热特性的影响规律。结果表明,水-液氧射流雾化蒸发的效果具有即时性,基于水雾-水蒸汽比热大和汽化焓高的特点,水雾浓度对主流总温降和总压恢复占主导性;而液氧浓度有利于降低湿空气的热流密度。在射流浓度2%-8%时,预冷段总压降系数为0.84%-1.27%,总温降系数范围为2.15%-15.12%,即温降范围为12.92K-90.89K。为平衡高空高马赫数时冷却水和液氧的需求,需控制水-液氧的射流比例,液氧射流量建议小于60%的总射流浓度。在“40%水-60%液氧”的射流比例时预冷段内流动和传热特性达到局部最优。在发动机物理转速不变时,射流冷却后预冷段内湿空气来流质量流量增幅0.22%-9.39%,其中空气和水蒸气含量的贡献份额分别约为71.8%和28.2%。因此,射流预冷有利于涡轮发动机在高马赫数时具有更高的加速度。 相似文献
322.
323.
电子反流失效模式是离子推力器关键失效模式之一,决定推力器工作寿命。为明确各参数对电子反流失效模式的影响程度,确定加速应力,为地面加速寿命实验验证方案和长寿命优化设计提供数据支持,采用Hybrid-PIC-MCC (Particle in Cell-Monte Carlo Collision)方法,构建了三栅极系统数值仿真模型。采用模型研究了地面真空舱本底压力、屏栅电压、加速栅电压、屏栅与加速栅间距、屏栅上游等离子体密度和放电室工质利用率等参数的影响敏感度对比。研究结果显示,真空舱本底压力可以作为加速寿命试验的首选加速应力,在推力器结构和工作本征参数中工质利用率为最敏感应力,其次是屏栅电压、屏栅上游等离子体密度、加速栅电压、屏栅和加速栅间距。 相似文献
324.
探针特性曲线的初级电子修正及用离子声波速度测电子温度的研究 总被引:1,自引:0,他引:1
在Te>>Ti,且存在两种电子能量的等离子体中,讨论了正确进行朗缪尔探针特性曲线修正--初级电子修正方法;用朗缪尔探针方法得到的等离子体电子温度与离子声波速度测量得到的电子温度分布实验结果比较证明,提出的初级电子修正方法是正确的.实验结果还表明,用离子声波速度测量得到的电子温度误差较小,平均测量误差△Te大约只有0.1eV,有望成为一种可行的电子温度测量方法. 相似文献
325.
阻止束流等离子体中电子反流到加速栅上游区域是离子推力器加速栅负电压的主要作用之一,能够阻止电子反流的加速栅电压最小值称为电子反流阈值。加速栅电压的选择直接影响到离子推力器的工作性能和运行寿命,电子反流阈值电压是确定加速栅电压的重要参考参数。基于PIC方法计算了20cm氙离子推力器加速栅电子反流阈值,并分析了加速栅孔径、栅间距、单孔引出束流电流大小对加速栅电子反流阈值电压的影响,计算结果与试验测量值符合较好。该数值模型为加速栅参数的选择和降低电子反流失效风险方法提供了参考,为下一步电子反流现象对加速栅寿命的预测分析奠定了基础。 相似文献
326.
离子光学系统的离子束引出过程是离子推力器重要的物理过程,该过程直接关系到推力器的推力、比冲、效率等参数。为研究离子在离子推力器光学系统中的运动特性,使用了基于IFE-PIC(Immersed Finite Element Particle-In-Cell)的离子推力器光学系统离子束引出过程的三维数值计算模型,计算了栅极间电场分布、电荷密度,栅极冲击电流及欠聚焦极限。计算结果表明,当屏栅极电压不同时,发生欠聚焦的等离子束电流也不同。在欠聚焦工况下,一部分离子与栅极碰撞,产生冲击电流。冲击电流随电离室等离子体数密度增加而增大。 相似文献
327.
为了获得射频离子推力器离子束流随放电参数的变化规律,采用试验研究的方法,就推力器引出束流与射频功率强度、工质种类、工质流量之间的调节规律开展了研究,搭建了射频离子推力器束流调节试验系统。研究结果表明:屏栅电压1200V,加速电压-250V,射频功率200W~700W,工质流量0.2mg/s~4.76mg/s,Xe,Ar,O_2,N_2四种工质下能够可靠放电并稳定引出,实现束流从54mA~467mA的调节,电离效率XeArO_2N_2,离子束流随射频功率和工质流量线性增加,在1.01mg/s的氙工质下,推力、比冲随射频功率从100W~400W线性增加实现推力7.35mN~27.5mN,比冲1191s~3696s大范围连续可调,工质利用率为21.1%~78.8%,并在射频功率为276W时工质利用率和功耗之间存在明显拐点,在应用中要根据任务选择最佳工作区间,合理控制工作参数可以提高推力器工作性能和效率。 相似文献
328.
深度变推发动机浮动环工作适应性研究 总被引:3,自引:0,他引:3
按照我国载人航天登月需求,正在开展多次起动、10%~100%深度变推力80 k N液氧/甲烷发动机关键技术研究。氧涡轮泵作为发动机的核心组件,采用的浮动环密封变工况工作适应性将直接影响到涡轮泵工作的安全性和可靠性。依据发动机系统变推力要求,采用数值计算方法对浮动环密封进行不同推力工况、不同偏心率条件下的浮起力计算,并与一维方法计算的浮起阻力结果进行对比分析,确定全工况范围内一、二级浮动环工作时偏心率介于0.4~0.6之间,浮动环泄漏量约为2.58~39.4 g/s。浮动环在此偏心率范围内工作可靠性高,可以有效地避免浮动环碰磨、崩边,具备大范围变工况工作能力,满足涡轮泵安全性工作和发动机深度变推力工作要求,可以为涡轮泵方案论证及设计提供理论依据。 相似文献
329.
330.
采用有限元仿真(FEM)与地面热平衡试验验证相结合的方法,计算并模拟了30 cm离子推力器处于在轨环境时,有、无主动热控对三栅极相对位移变化造成的影响,并对目前离子推力器设置的工作启动流程可能造成的打火风险进行了预估。结果显示:三栅极组件的热形变方向均为法向方向,且栅极中心区域的间距最小;在 -269 ℃ 在轨极限环境温度下,推力器在5 kW工作模式下温度平衡后的屏栅与加速栅最大热态间距为0.14 mm,加速栅和减速栅则已发生贴合;在受太阳辐照以及卫星帆板恒温边界的影响下,栅面最低初始温度为-102 ℃;当推力器主动热控保证温控点为20 ℃时,栅面最低启动温度为-25 ℃,且推力器工作8000 s后,屏栅与加速栅、加速栅与减速栅的最小间距分别稳定在0.25 mm和0.20 mm;当推力器主动热控保证温控点为50 ℃时,推力器工作9000 s后,屏栅与加速栅、加速栅和减速栅最小间距分别稳定在0.31 mm和0.30 mm,能够满足0.25 mm的栅极安全打火间距要求。 相似文献