首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   34篇
  国内免费   10篇
航空   58篇
航天技术   75篇
综合类   11篇
航天   14篇
  2023年   5篇
  2022年   11篇
  2021年   8篇
  2020年   8篇
  2019年   6篇
  2018年   6篇
  2017年   2篇
  2016年   1篇
  2015年   5篇
  2014年   2篇
  2013年   5篇
  2012年   10篇
  2011年   9篇
  2010年   4篇
  2009年   10篇
  2008年   6篇
  2007年   6篇
  2006年   2篇
  2005年   5篇
  2004年   4篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  2000年   5篇
  1999年   5篇
  1998年   3篇
  1997年   3篇
  1996年   6篇
  1994年   5篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有158条查询结果,搜索用时 796 毫秒
1.
Gradual solar energetic particle (SEP) events are evidently accelerated by coronal/interplanetary shocks driven by coronal mass ejections. This talk addresses the different factors which determine the composition of the accelerated ions. The first factor is the set of available seed populations including the solar wind core and suprathermal tail, remnant impulsive events from preceding solar flares, and remnant gradual events. The second factor is the fractionation of the seed ions by the injection process, that is, what fraction of the ions are extracted by the shock to participate in diffusive shock acceleration. Injection is a controversial topic since it depends on the detailed electromagnetic structure of the shock transition and the transport of ions in these structured fields, both of which are not well understood or determined theoretically. The third factor is fractionation during the acceleration process, due to the dependence of ion transport in the turbulent electromagnetic fields adjacent to the shock on the mass/charge ratio. Of crucial importance in the last two factors is the magnetic obliquity of the shock. The form of the proton-excited hydromagnetic wave spectrum is also important. Finally, more subtle effects on ion composition arise from the superposition of ion contributions over the time history of the shock along the observer’s magnetic flux tube, and the sequence of flux tubes sampled by the observer.  相似文献   
2.
3.
以亚音速、大展弦比的大中型民用飞机机翼挂装副油箱为研究对象,分析CCAR-25部中载荷计算的相关适航条款内容,考虑外挂物自身运动及机翼结构弹性变形对副油箱气动载荷的影响,给出了副油箱静载荷计算的过载—速度包线,高度—速度包线、载荷计算情况等,在工程应用成熟的《运输类飞机载荷计算程序包》基础上,采用亚音速稳态定常流升力线理论与风洞试验相结合的方法,将机翼简化为悬臂梁进行气动弹性修正,开展副油箱气动力弹性修正计算、惯性力计算、副油箱质量实时更新、包线筛选等功能模块的研究,通过工程应用其计算精度满足要求,形成了满足适航条款的副油箱静载荷计算方法,规范了副油箱静载荷的计算流程,拓展了《运输类飞机载荷计算程序包》的功能。  相似文献   
4.
本文结合位相物体的先验知识,研究了用光束偏转层迭代法重建三维位物体的重建精度及算法,内插函数,采样方式,视角范围和数据噪声的影响,作为一个应用实例,诊断了气体温度场某一截面的温度分布,并与热电偶的测量值进行了比较。  相似文献   
5.
非重力阻尼的连续、快速、高精度补偿是实现重力梯度测量卫星精细重力场测量的关键技术之一,直接影响到整星工程任务的成败。针对重力梯度测量卫星在轨飞行期间对电推进系统宽范围连续变推力能力的应用需求,分析了10cm氙离子推力器推力调节响应特性。在此基础上,通过对阳极电流、励磁电流和阳极流率等推力高敏感响应参量的组合调节,开展了推力调节试验研究,验证了10cm氙离子推力器宽范围连续变推力调节能力,获得了1~20mN范围内的推力调节性能及其变化规律。试验结果表明:在采用地面供电、供气设备条件下,10cm氙离子推力器能够在100~597W的功率范围内实现0.98~20.29mN的推力宽范围调节,比冲175~3500s,推力分辨率优于50μN。研究为建立10cm氙离子电推进系统的推力控制数学模型及调节控制算法奠定基础。  相似文献   
6.
采用ZDH-100型号离子束复合沉积设备沉积WS_2-Ti-Ag复合薄膜,基材为轴承钢和单晶硅(100).采用场发射扫描电子显微镜、XRD衍射仪,检测复合薄膜的表面形貌、微观结构.采用球-盘式摩擦磨损试验机,对复合薄膜在大气环境中的摩擦性能进行了研究.结果表明:采用离子束辅助沉积技术制备的WS_2-Ti-Ag复合薄膜是非晶态薄膜;并且随法向载荷的增加,复合薄膜的摩擦因数减小,摩擦状态越稳定,耐磨寿命越短.  相似文献   
7.
考虑气动弹性的风力机叶片性能分析   总被引:1,自引:0,他引:1  
考虑气动弹性对风力机叶片的影响,采用叶素-动量理论计算气动力,采用盒形梁理论计算结构变形,耦合静气动弹性平衡方程,建立了风力机叶片静气动弹性分析程序。本文运用该程序进行了多种风速下叶片载荷及风轮性能的计算,分析了气动弹性对原设计的影响。结果表明,对于兆瓦级风力机,在大风速情况下,气动弹性对风轮性能有着明显影响,并会造成气动载荷的重新分布,影响结构设计的准确性。该方法可用于对叶片气动设计与载荷计算方法进行气动弹性修正。  相似文献   
8.
徐建新  魏志毅 《航空学报》1997,18(4):444-447
应用“替损件”的设计思想来控制梁式机翼的疲劳寿命,并在××机翼主梁的寿命试验和全机组合疲劳试验中得到验证,得出十分满意的结果,为梁式机翼结构实现长寿命高可靠性的目标,提供一条成功的途径。  相似文献   
9.
一种精化的层合梁脱层模型   总被引:2,自引:0,他引:2  
舒小平 《航空学报》1998,19(2):236-239
建立了一种精化的复合材料层合梁脱层模型。脱层梁被分为3个区,各区位移场为厚度坐标的三次函数,能满足层间位移和剪应力的连续条件、脱层界面的脱层条件和脱层边界点的位移连续条件。构造了其有限元模型。算例表明该模型较之基于经典理论和一阶剪切变形理论的脱层模型精度显著提高。  相似文献   
10.
为了得到试验测量不到的气体放电过程中电磁场作用下单个原初电子的动力学行为,建立了LIPS-200离子推力器放电室二维仿真模型,应用网格粒子法(PIC)和蒙特卡洛碰撞(MCC)模拟法对其进行了研究。模拟得到在额定工况下原初电子和中性原子之间的碰撞概率、原初电子损耗率、电磁场分布对其运动速度及运动轨迹的影响等。结果表明磁铁表面磁感强度最大,越靠近放电室内部磁感强度越小,对称轴区域无磁场分布,原初电子在电磁场作用下沿磁力线作加速螺旋运动;运动等离子体的自洽电势大小范围仅为0~2.0V,几乎不会影响等离子体运动;对应总原初电子个数为1.2×106时直接被阳极表面吸收的损耗率仅为0.02%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号