首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   463篇
  免费   18篇
  国内免费   7篇
航空   30篇
航天技术   391篇
综合类   4篇
航天   63篇
  2023年   8篇
  2022年   5篇
  2021年   19篇
  2020年   24篇
  2019年   20篇
  2018年   17篇
  2017年   4篇
  2016年   6篇
  2015年   7篇
  2014年   50篇
  2013年   44篇
  2012年   21篇
  2011年   53篇
  2010年   32篇
  2009年   46篇
  2008年   42篇
  2007年   9篇
  2006年   7篇
  2005年   11篇
  2004年   10篇
  2003年   5篇
  2002年   7篇
  2001年   4篇
  2000年   7篇
  1999年   3篇
  1998年   3篇
  1997年   5篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   4篇
  1992年   5篇
  1990年   2篇
  1988年   1篇
  1986年   1篇
排序方式: 共有488条查询结果,搜索用时 62 毫秒
91.
Dietrich Rex   《Space Policy》1998,14(2):95-105
An appraisal of current and future risks from space debris is presented with the aid of calculations carried out by the MASTER model. The efficacy of various technical options -- such as fuel venting, de-orbiting and use of a graveyard orbit -- for counteracting the problem is discussed. The article then focuses on governmental and international cooperative measures and looks at the recent work done by subcommittees of the UN COPUOS.  相似文献   
92.
Anomaly detection is extremely important for earthquake parameters estimation. In this paper, an application of Artificial Neural Networks (ANNs) in the earthquake precursor’s domain has been developed. This study is concerned with investigating the Total Electron Content (TEC) time series by using a Multi-Layer Perceptron (MLP) neural network to detect seismo-ionospheric anomalous variations induced by the powerful Tohoku earthquake of March 11, 2011.  相似文献   
93.
Ionosphere delay correction is the main error correction to the computation of single frequency user position using satellite navigation. However ionosphere delay consists of not only delay but also frequency dependent differential hardware biases from satellite and receiver ends. For ionosphere point of view, Indian Regional Navigation Satellite System (IRNSS) service area comes in equatorial anomaly region. It is a unique satellite navigation system which operates at L5 and S frequencies and consists of Geostationary Earth Orbit (GEO) and Geo Synchronous Orbit (GSO) satellite constellation. With IRNSS measurements availability, there is a good opportunity to estimate and analyse differential hardware biases with GEO/GSO combination and with equatorial ionosphere variation. In this paper, Kalman filter based estimation with triangular interpolation technique is used to estimate differential hardware biases for all IRNSS satellites and reference receivers at L5 frequency. The standard deviation of the 15?days of daily estimation of satellite differential hardware biases is in the range of 0.32 to 1.17 TECU for all IRNSS satellites. Similarly, the standard deviation of the 15?days of daily estimation varies up to 2.85 and 6.0 TECU for receiver differential hardware biases during calm and stormy period respectively. The ionosphere delay computed using estimated differential hardware biases is compared with Global Ionosphere Map (GIM) data. A rigorous analysis is carried out to study the error in the estimation in terms of input data noise level, satellite constellation and effect of latitude. Our result reveals that over IRNSS service area, there is an exponential increase in the error in the estimation of receiver differential hardware biases with respect to latitude.  相似文献   
94.
An algorithm is proposed for evaluation of the probability of occurrence of an F1 layer or L condition, based on tables. Observations independent of the tables database are used for comparison between the estimated probability of occurrence, the formulation used at present in IRI, and the occurrence actually observed. The importance of the inclusion of L condition in the electron density profile model is shown.  相似文献   
95.
96.
The plasmaspheric electron content (PEC) was estimated by comparison of GPS TEC observations and FORMOSAT-3/COSMIC radio occultation measurements at the extended solar minimum of cycle 23/24. Results are retrieved for different seasons (equinoxes and solstices) of the year 2009. COSMIC-derived electron density profiles were integrated up to the height of 700 km in order to retrieve estimates of ionospheric electron content (IEC). Global maps of monthly median values of COSMIC IEC were constructed by use of spherical harmonics expansion. The comparison between two independent measurements was performed by analysis of the global distribution of electron content estimates, as well as by selection specific points corresponded to mid-latitudes of Northern America, Europe, Asia and the Southern Hemisphere. The analysis found that both kinds of observations show rather similar diurnal behavior during all seasons, certainly with GPS TEC estimates larger than corresponded COSMIC IEC values. It was shown that during daytime both GPS TEC and COSMIC IEC values were generally lower at winter than in summer solstice practically over all specific points. The estimates of PEC (h > 700 km) were obtained as a difference between GPS TEC and COSMIC IEC values. Results of comparative study revealed that for mid-latitudinal points PEC estimates varied weakly with the time of a day and reached the value of several TECU for the condition of solar minimum. Percentage contribution of PEC to GPS TEC indicated the clear dependence from the time with maximal values (more than 50–60%) during night-time and lesser values (25–45%) during day-time.  相似文献   
97.
Plasma bubble is one of the important weather events of the ionosphere. In past research, many studies on its occurrence characteristics have been done based on various observations, such as ionosondes, topside sounders, radio scintillations and in situ measurements by satellites. In recent years, GPS has become an important tool for the studies in this aspect. In this research, a study is made on occurrence characteristics of plasma bubbles with the GPS observations collected by the Hong Kong local GPS network for about 12 years.  相似文献   
98.
Modern use and study of the auroral region needs to attract a wider class of models for describing conditions of radio wave propagation in the ionosphere. In this paper the possibilities of the International Reference Ionosphere model, well-proven and widespread in the mid-latitudes, are investigated in the high latitude zone. Model and measured values of the critical frequency foF2 for two mid-latitude stations (Juliusruh and Goosebay) and four high-latitude ones (Loparskaya, Sodankyla, Sondrestrom, Thule) are compared. Deviations of medians, variations from day to day and solar activity trends seemed to be similar for both areas. This similarity is irrespective of the RZ12 index. Special attention is paid to the TEC parameter and its determination using 6 versions of models, a new version of the model IRI2010 (IRI-Plas) among them. It is shown that the IRI-Plas model significantly improves the definition of TEC in contrast to the versions of IRI2007 and the new model NeQuick. The use of the median of the experimental equivalent slab thickness, together with the current values of the TEC, increases by a factor of two the agreement between calculated and measured foF2 values as compared with the variations from day to day. This allows foF2 to be defined in near-real time.  相似文献   
99.
This paper reports on the Dancer project, which is one of three related projects initiated by working group 1 of the International Association of Geodesy. The Dancer project develops JAVA parameter estimation software that runs in the form of a distributed process on the internet, in such a way that each processing node handles the data of a single geodetic instrument. By exchanging a minimum amount of information among all processing nodes, the same global normal equation solution is found by all instruments. The result is a fully scalable least squares solution that has no practical limit to the number of GPS receivers or other tracking devices that may be included in a single reference frame realization.  相似文献   
100.
The electron density profiles in the bottomside F2-layer ionosphere are described by the thickness parameter B0 and the shape parameter B1 in the International Reference Ionosphere (IRI) model. We collected the ionospheric electron density (Ne) profiles from the FORMOSAT-3/COSMIC (F3/C) radio occultation measurements from DoY (day number of year) 194, 2006 to DoY 293, 2008 to investigate the daytime behaviors of IRI-B parameters (B0 and B1) in the equatorial regions. Our fittings confirm that the IRI bottomside profile function can well describe the averaged profiles in the bottomside ionosphere. Analysis of the equatorial electron density profile datasets provides unprecedented detail of the behaviors of B0 and B1 parameters in equatorial regions at low solar activity. The longitudinal averaged B1 has values comparable with IRI-2007 while it shows little seasonal variation. In contrast, the observed B0 presents semiannual variation with maxima in solstice months and minima in equinox months, which is not reproduced by IRI-2007. Moreover, there are complicated longitudinal variations of B0 with patterns varying with seasons. Peaks are distinct in the wave-like longitudinal structure of B0 in equinox months. An outstanding feature is that a stable peak appears around 100°E in four seasons. The significant longitudinal variation of B0 provides challenges for further improving the presentations of the bottomside ionosphere in IRI.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号