首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   396篇
  免费   53篇
  国内免费   57篇
航空   201篇
航天技术   237篇
综合类   26篇
航天   42篇
  2024年   3篇
  2023年   13篇
  2022年   13篇
  2021年   17篇
  2020年   17篇
  2019年   19篇
  2018年   19篇
  2017年   9篇
  2016年   7篇
  2015年   9篇
  2014年   19篇
  2013年   21篇
  2012年   23篇
  2011年   28篇
  2010年   18篇
  2009年   36篇
  2008年   35篇
  2007年   15篇
  2006年   21篇
  2005年   18篇
  2004年   8篇
  2003年   21篇
  2002年   12篇
  2001年   11篇
  2000年   7篇
  1999年   7篇
  1998年   11篇
  1997年   15篇
  1996年   12篇
  1995年   10篇
  1994年   12篇
  1993年   9篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1986年   2篇
  1984年   1篇
排序方式: 共有506条查询结果,搜索用时 15 毫秒
81.
There are two ways of external forcing of the lower ionosphere, the region below an altitude of about 100 km: (1) From above, which is directly or indirectly of solar origin. (2) From below, which is directly or indirectly of atmospheric origin. The external forcing of solar origin consists of two general factors – solar ionizing radiation variability and space weather. The solar ionization variability consist mainly from the 11-year solar cycle, the 27-day solar rotation and solar flares, strong flares being very important phenomenon in the daytime lower ionosphere due to the enormous increase of the solar X-ray flux resulting in temporal terminating of MF and partly LF and HF radio wave propagation due to heavy absorption of radio waves. Monitoring of the sudden ionospheric disturbances (SIDs – effects of solar flares in the lower ionosphere) served in the past as an important tool of monitoring the solar activity and its impacts on the ionosphere. Space weather effects on the lower ionosphere consist of many different but often inter-related phenomena, which govern the lower ionosphere variability at high latitudes, particularly at night. The most important space weather phenomenon for the lower ionosphere is strong geomagnetic storms, which affect substantially both the high- and mid-latitude lower ionosphere. As for forcing from below, it is caused mainly by waves in the neutral atmosphere, i.e. planetary, tidal, gravity and infrasonic waves. The most important and most studied waves are planetary and gravity waves. Another channel of the troposphere coupling to the lower ionosphere is through lightning-related processes leading to sprites, blue jets etc. and their ionospheric counterparts. These phenomena occur on very short time scales. The external forcing of the lower ionosphere has observationally been studied using predominantly ground-based methods exploiting in various ways the radio wave propagation, and by sporadic rocket soundings. All the above phenomena are briefly mentioned and some of them are treated in more detail.  相似文献   
82.
The Moon and the moons of Mars should be extremely quiet seismically and could therefore become sensitive gravitational wave detectors, if instrumented properly. Highly sensitive displacement sensors could be deployed on these planetary bodies to monitor the motion induced by gravitational waves. A superconducting displacement sensor with a 10-kg test mass cooled to 2 K will have an intrinsic instrument noise of 10−16 m Hz−1/2. These sensors could be tuned to the lowest two quadrupole modes of the body or operated as a wideband detector below its fundamental mode. An interesting frequency range is 0.1–1 Hz, which will be missed by both the ground detectors on the Earth and LISA and would be the best window for searching for stochastic background gravitational waves. Phobos and Deimos have their lowest quadrupole modes at 0.2–0.3 Hz and could offer a sensitivity hmin ? 10−22 Hz−1/2 within their resonance peaks, which is within two orders of magnitude from the goal of the Big Bang Observer (BBO). The lunar and Martian moon detectors would detect many interesting foreground sources in a new frequency window and could serve as a valuable precursor for BBO.  相似文献   
83.
84.
Ionospheric effects of meteorological origin observed by the continuous HF Doppler sounder over the Czech Republic are reported in this paper. We focused on detection of waves of periods 1–10 min. We discuss the influence of dynamics and intensity of active weather systems on the occurrence of short period waves and dependence of the observed ionospheric effects on the height of reflection of the sounding radio wave. We observed 3–5 min waves during a severe weather event in summer and 2.5–4 min waves during a severe weather event in winter. We excluded possible geomagnetic origin of these oscillations by the analysis of fluctuations of the local geomagnetic field. In eight cases of 10, wave activity in the analysed period range was not significantly increased comparing to quiet days. The intensity of weather systems as well as the location of potential sources of waves towards the points of HF Doppler shift observation influence significantly the occurrence of infrasonic waves in the ionosphere. The results in Central Europe differ considerably from those previously obtained in North America. As a possible reason, we discuss different intensity and dynamics of weather systems in both regions.  相似文献   
85.
An interface between the fully ionized hydrogen plasma of the solar wind (SW) and the partially ionized hydrogen gas flow of the local interstellar medium (LISM) is formed as a region where there is a strong interaction between these two flows. The interface is bounded by the solar wind termination shock (TS) and the LISM bow shock (BS) and is separated on two regions by the heliopause (HP) separating the solar wind and charged component of the LISM (plasma component below). The BS is formed due to the deceleration of the supersonic LISM flow relative to the solar system. Regions of the interface between the TS and HP and between the HP and BS were in literature named as the inner and outer heliosheaths, respectively. An investigation of the structure and physical properties of the heliosheath is at present especially interested due to the fact that Voyager-1 and Voyager-2 have crossed the TS in December 2004 (Burlaga, L.F., Ness, N.F., Acuna, M.Y., et al. Crossing the termination shock into the the heliosheath. Magnetic fields. Science 309, 2027–2029, 2005; Fisk, L.A. Journey into the unknown beyond. Science 309, 2016–2017, 2005; Decker, R.B., Krimigis, S.M., Roelof, E.C., et al. Voyager 1 in the foreshock, termination shock and heliosheath. Science 309, 2020–2024, 2005; Stone, E.C., Cummings, A.C., McDonald, F.B., et al. Voyager 1 explores the termination shock region and the heliosheath beyond. Science 309, 2017–2020, 2005) and in September 2007 (Jokipii, J.R. A shock for Voyager 2. Nature 454, 38–39, 2008; Gurnett, D.A., Kurth, W.S. Intense plasma waves at and near the solar wind termination shock. Nature 454, 78–80, 2008. doi: 10.1038/nature07023; Wang, L., Lin, R.P., Larson, D.E., Luhmann, J.G. Domination of heliosheath pressure by shock-accelerated pickup ions from observations of neutral atoms. Nature 454, 81–83, 2008. doi: 10.1038/nature07068.14; Burlaga, L.F., Ness, N.F., Acuna, M.H., et al. Magnetic fields at the solar wind termination shock. Nature 454, 75–77, 2008. doi: 10.1038/nature07029; Richardson, J.D., Kasper, J.C., Wang, C., et al. Cool heliosheath plasma and deceleration of the upstream solar wind at the termination shock. Nature 454, 63–66, 2008. doi: 10.1038/nature07024; Stone, E.C., Cummings, A.C., McDonald, F.B., et al. An asymmetric solar wind termination shock. Nature 454, 71–74, 2008. doi: 10.1038/nature07022; Decker, R.B., Krimigis, S.M., Roelof, E.C., et al. Mediation of the solar wind termination shock by non-thermal ions. Nature 454, 67–70, 2008. doi: 10.1038/nature 07030), respectively, and entered to the inner heliosheath.  相似文献   
86.
This paper describes a microwave limb technique for measuring Doppler wind in the Earth’s mesosphere. The research algorithm has been applied to Aura Microwave Limb Sounder (MLS) 118.75 GHz measurements where the O2 Zeeman lines are resolved by a digital autocorrelation spectrometer. A precision of ∼17 m/s for the line-of-sight (LOS) wind is achieved at 80–92 km, which corresponds to radiometric noise during 1/6 s integration time. The LOS winds from Aura MLS are mostly in the meridional direction at low- and mid-latitudes with vertical resolution of ∼8 km. This microwave Doppler technique has potential to obtain useful winds down to ∼40 km of the Earth’s atmosphere if measurements from other MLS frequencies (near H2O, O3, and CO lines) are used. Initial analyses show that the MLS winds from the 118.75 GHz measurements agree well with the TIDI (Thermosphere Ionosphere Mesosphere Energetics and Dynamics Doppler Interferometer) winds for the perturbations induced by a strong quasi 2-day wave (QTDW) in January 2005. Time series of MLS winds reveal many interesting climatological and planetary wave features, including the diurnal, semidiurnal tides, and the QTDW. Interactions between the tides and the QTDW are clearly evident, indicating possible large tidal structural changes after the QTDW events dissipate.  相似文献   
87.
We present a theoretical overview of low-frequency waves and instabilities in collisionless, multi-component plasmas with gyrotropic ( ) thermal pressure. We show that the complete dispersion relation can be obtained in the framework of a mixed magnetohydrodynamic (MHD)-kinetic formalism, which uses the MHD mass, momentum, and induction equations, together with the kinetically corrected version of the double-adiabatic equations of state. The complete dispersion relation contains not only the three standard modes (fast, slow, and Alfvén) from double-adiabatic MHD, but also the mirror mode from kinetic theory. We examine the stability properties of these four modes, firstly in the case of a uniform medium, and secondly in the case of a stratified and rotating medium. We also discuss the connections with the quasi-interchange modes (interchange and translation) often referred to in the context of magnetospheric physics.  相似文献   
88.
Gravity waves are recognized as an integral part of earth’s atmosphere which are mainly responsible for energy and momentum distribution among different layers and regions in the atmosphere. Various sources present in land, ocean, and atmosphere such as mountains, convection, jets and fronts etc. are responsible for gravity waves generation. Thunderstorms (deep convection) are one of the major sources of gravity waves in the tropical region, capable of generating waves with a wide range of frequencies and scales and significantly affecting the existing waves. Previous numerical studies have characterised the wave properties that are generated from thunderstorms, but there are no statistically quantified studies. In this paper, we have modelled the relationship between the latent heat generated inside a thunderstorm and the gravity wave properties at the geo-collocated points. Gravity waves are identified over Singapore radiosonde station (with data available until 30?km altitude with 12?h temporal resolution) in the stratosphere using wavelet studies. Based on the GROGRAT ray tracing methods to identify the thunderstorm locations, and RAMS cloud-resolving models simulations to obtain the latent heating of the thunderstorm, a regression analysis is performed using 200 cases of gravity waves. Furthermore, cloud-top momentum flux analysis is performed for various cases latent heat. This study is expected to provide more quantified and concrete information on the coupling between the thunderstorm and gravity wave which includes the variance in these relationships due to wave frequency spectrum and generation mechanisms.  相似文献   
89.
研究了长细比大的管形装药固体火箭发动机在燃烧过程中的侵蚀燃烧和滞点漂移现象,视燃烧产物为准定常流动,使用分段解析法,进行内流场的数据模拟,并对滞点漂移进行了计算。  相似文献   
90.
The geometry of a typical interplanetary shock front in the vicinity of the Earth’s orbit predicts that the leading edge of the foreshock region comes into contact with the magnetosphere a few hours ahead of geomagnetic sudden impulses (SI). There is reason to believe that the interaction of the magnetosphere with the foreshock leads to magnetic and ionospheric disturbances, which can be detected by ground-based instruments. We searched for specific precursors of SIs in data from the Scandinavian riometer network and in the short period geomagnetic pulsation data from mid-latitude magnetometers. We found that SIs were preceded by the following three features: (1) an increase in riometric absorption, (2) excitation of Pcl magnetic pulsations and (3) a spectral broadening of the Pc3 magnetic pulsations. Our observations may be useful for the study of acceleration processes in the solar wind. These observations are also of potential forecasting interest.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号