首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   11篇
  国内免费   12篇
航空   23篇
航天技术   99篇
综合类   2篇
航天   14篇
  2023年   2篇
  2022年   1篇
  2021年   7篇
  2020年   6篇
  2019年   5篇
  2018年   10篇
  2017年   2篇
  2016年   6篇
  2015年   7篇
  2014年   8篇
  2013年   12篇
  2012年   7篇
  2011年   7篇
  2010年   4篇
  2009年   15篇
  2008年   9篇
  2007年   3篇
  2006年   7篇
  2005年   7篇
  2004年   1篇
  2003年   4篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1995年   2篇
  1991年   1篇
  1990年   1篇
排序方式: 共有138条查询结果,搜索用时 31 毫秒
71.
The topic of relativistic electron dynamics in the outer radiation belt has received considerable attention for many years. Nevertheless, the problem of understanding the physical phenomenon involved is far from being resolved. In this paper, we use DEMETER observations to examine the variations of the energetic electron fluxes and ELF/VLF wave intensities in the inner magnetosphere during the intense 8 November 2004 magnetic storm. Electron flux spectra and associated wave intensity spectra are analysed throughout the magnetic storm and common characteristics or differences to other storm events are retained. The overall objective of this study is to identify and derive parameters that are relevant for particle flux modelling; the time constant characterizing the persistent decay after particle enhancement was found to be one of these important model parameters.The analysis of the 8 November 2004 event reveals that for L-shell parameter higher than 4, an electron flux dropout is observed during the storm’s main phase for electrons in the energy range 0.1–1 MeV, as has been reported from other measurements. Characteristic wave spectra accompanying this phase are analysed. They show a typical enhancement in the frequency range 0.3–10 kHz at onset for all L-shell values under consideration (2 < L < 5). During the first stage of the recovery phase, the electron fluxes are increased to a level higher than the pre-storm level, whereas the level of wave intensity in the frequency range observed below 300 Hz is at its highest. In the second stage, the particle flux decrease goes hand in hand with a global wave activity decline, the relaxation time of the latter being smaller than the former’s one. In some other cases, long-lasting electron enhancement associated with constant wave activity has been observed during this latter stage. For the above mentioned storm, while at low L values the decay time constants are higher for low energy electrons than for high energy electrons, this order is reversed at high L values. At about L = 3.6 the time constant is independent of electron energy.  相似文献   
72.
Intense geomagnetically induced currents (GIC) can hamper rail traffic by disturbing signaling and train control systems. GIC threats have been a concern for technological systems at high-latitude locations due to geomagnetic disturbances driven by substorm expansion electrojet or convection electrojet intensifications. However, other geomagnetic storm processes such as storm sudden commencement (SSC) and geomagnetic pulsations can also cause GIC concerns for technological systems. We present in this paper the first evidence based on statistical data for links between geomagnetic disturbances and faulty operations (anomalies) in the functioning of railway automatics and telemetry. We analyze anomalies of automatic signaling and train control equipment which occurred in 2004 on the East-Siberian Railway (corrected geomagnetic latitude m = 46–51°N and longitude λm = 168–187°E). Our results reveal a seasonal effect in the number of anomalies per train similar to the one observed in geomagnetic activity (Kp, Ap, Dst indices). We also found an increase by a factor of 3 in the total duration of daily anomalies during intense geomagnetic storms (local geomagnetic index specific to Siberian Observatory Amax > 30), with a significant correlation between the daily sum of durations of anomalies with geomagnetic activity. Special attention was paid to failures not related to recognized technical malfunctions. We found that the probability of these failures occurring in geomagnetically disturbed periods was 5–7 times higher than the average anomaly occurrence.  相似文献   
73.
将电离层扰动从其背景中分离出来一直是电离层扰动研究的核心与难点。文章综述白谱法在电离层扰动研究方面取得的进展,主要有:1)白谱法比常规电离层扰动提取方法能更好地描述磁暴期间电离层的扰动,利用白谱法构建的电离层天气单站指数 Js、全球指数 Jp 和区域指数Jr与 Dst 指数之间存在极好的关联性,可以直接利用 Dst 来对 Jp进行预报。2)白谱法同样适合研究强磁暴期间的电离层异常弱响应。对比研究发现,电离层在强磁暴条件下的弱响应不依赖于采用的扰动提取方法本身,并且该现象的出现与纬度、地方时及磁暴前期条件强烈相关。3)白谱法是研究地磁平静期由其他扰动源引起电离层扰动的有力工具。基于白谱法构建的Js分布图能够很好地反映台风过程中电离层扰动的空间特征。  相似文献   
74.
Severe geomagnetic storms and their effects on the 557.7 nm dayglow emission are studied in mesosphere. This study is primarily based on photochemical model with the necessary input obtained from a combination of experimental observations and empirical models. The model results are presented for a low latitude station Tirunelveli (8.7°N, 77.8°E). The volume emission rates are calculated using MSISE-90 and NRLMSISE-00 neutral atmospheric models. A comparison is made between the results obtained from these two models. A positive correlation amongst volume emission rate (VER), O, O2 number densities and Dst index has been found. The present results indicate that the variation in emission rate is more for MSISE-90 than in NRLMSISE-00 model. The maximum depletion in the VER of greenline dayglow emission is found to be about 30% at 96 km during the main phase of the one of the geomagnetic storms investigated in the case of MSISE-90 (which is strongest with Dst index −216 nT). The O2 density decreases about 22% at 96 km during the main phase of the same geomagnetic storm.The NRLSMSISE-00 model does not show any appreciable change in the number density of O during any of the two events. The present study also shows that the altitude of peak emission rate is unaffected by the geomagnetic storms. The effect of geomagnetic storm on the greenline nightglow emission has also been studied. It is found that almost no correlation can be established between the Dst index and variations in the volume emission rates using the NRLMSISE-00 neutral model atmosphere. However, a positive correlation is found in the case of MSISE-90 and the maximum depletion in the case of nightglow is about 40% for one of the storms. The present study shows that there are significant differences between the results obtained using MSISE-90 and NRLMSISE-00.  相似文献   
75.
在研究惯性/地磁组合导航技术的基础上,提出了一种面向相关匹配算法应用的地磁图适配性分析方法。给出了地磁图适配性的定义,并通过分析地磁图的相关曲面特征,建立了地磁图适配性与相关曲面的相关峰尖锐性系数、独立性系数和抗噪声能力系数的定量关系,给出了一种综合评价准则。实验证明,利用这种评价准则判断地磁图适配性得出的结论,与通过相关匹配实验,计算地磁图的配准概率来判断地磁图适配性得出的结论一致,表明这是一种十分有效的判断地磁图适配性的方法。  相似文献   
76.
The foF2 deviations from quiet conditions during three days preceding a magnetic storm are considered. The data of the Juliusruh station for the period of 1976–2010 are analyzed, and the results are compared to the similar analysis of the Slough data published earlier. A seasonal dependence of the deviations (events) is found: the probability of the events occurrence is higher in winter than in summer. This probability also depends on solar activity (it decreases with an increase in the F10.7 index) and the magnetic storm intensity (it decreases with an increase in the magnitude of the negative Dst index). The dependence of the events number on the local time of the storm onset (SO) and the time of the event prior to the SO moment is also analyzed. The results for both stations are in a good agreement and confirm the initial concept that the aforementioned events could be considered as precursors of the coming magnetic storm.  相似文献   
77.
This collaborative study is based on the analysis and comparison of results of coordinated experimental investigations conducted in Bulgaria and Azerbaijan for revealing a possible influence of solar activity changes and related geomagnetic activity variations on the human cardio-vascular state. Arterial blood pressure and heart rate of 86 healthy volunteers were measured on working days during a period of comparatively high solar and geomagnetic activity (2799 measurements in autumn 2001 and spring 2002) in Sofia. Daily experimental investigations of parameters of cardio-vascular health state were performed in Azerbaijan with a permanent group of examined persons. Heart rate and electrocardiograms were digitally registered (in total 1532 records) for seven functionally healthy persons on working days and Saturdays, in the Laboratory of Heliobiology at the Medical Center INAM in Baku, from 15.07.2006 to 13.11.2007. Obtained digital recordings were subjected to medical, statistical and spectral analyses. Special attention was paid to effects of solar extreme events, particularly those of November 2001 and December 2006. The statistical method of the analysis of variance (ANOVA) and post hoc analysis were applied to check the significance of the influence of geomagnetic activity on the cardio-vascular parameters under consideration. Results revealed statistically significant increments for the mean systolic and diastolic blood pressure values of the group with geomagnetic activity increase. Arterial blood pressure values started increasing two days prior to geomagnetic storms and kept their high values up to two days after the storms. Heart rate reaction was ambiguous and not significant for healthy persons examined (for both groups) under conditions with geomagnetic activity changes. It is concluded that heart rate for healthy persons at middle latitudes can be considered as a more stable physiological parameter which is not so sensitive to environmental changes while the dynamics of arterial blood pressure reveals a compensatory reaction of the human organism for adaptation.  相似文献   
78.
针对低轨微纳卫星体积小、功耗低的设计约束,提出了基于低轨地磁的定轨/定姿全磁自主导航算法.该算法仅利用三轴磁强计测量值和卫星动力学方程建立Kalman滤波器,实现了低轨微纳卫星的全自主轨道确定和姿态测量,理论仿真结果表明,该全磁导航算法精度能够满足低轨微纳卫星的一般要求.利用高精度地磁模拟器搭建了微纳卫星全磁自主导航地面仿真验证系统,对算法进行了全物理仿真测试和实验误差分析,进一步验证了全磁自主导航算法的可行性,为低轨微纳卫星提供了一种低成本、高自主、高可靠性的导航方法.  相似文献   
79.
The object of investigation is the phenomenon of proton (from tens keV to several MeV) flux enhancement in near-equatorial region (L < 1.15) at altitude up to ∼1300 km (the storm-time equatorial belt). These fluxes are quite small but the problem of their origin is more interesting than the possible damage they can produce. The well known sources of these protons are radiation belt and ring current. The mechanism of transport is the charge-exchange on neutral hydrogen of exosphere and the charge-exchange on oxygen of upper atmosphere. Therefore this belt is something like the ring current projection to low altitudes. Using the large set of satellites data we obtain the average energy spectrum, the approximation of spectrum using kappa-function, the flux dependence on L, B geomagnetic parameters. On the basis of more than 30 years of experimental observations we made the empiric model that extends model of proton fluxes below 100 keV in the region of small L-values (L < 1.15). The model was realized as the package of programs integrated into COSRAD system available via Internet. The model can be used for revision of estimation of dose that low-orbital space devices obtain.  相似文献   
80.
During the first half of November 2004, many solar flares and coronal mass ejections (CMEs) were associated with solar active region (AR) 10696. This paper attempts to identify the solar and interplanetary origins of two superstorms which occurred on 8 and 10 November with peak intensities of Dst = −373 nT and −289 nT, respectively. Southward interplanetary magnetic fields within a magnetic cloud (MC), and a sheath + MC were the causes of these two superstorms, respectively. Two different CME propagation models [Gopalswamy, N., Yashiro, S., Kaiser, M.L. et al. Predicting the 1-AU arrival times of coronal mass ejections. J. Geophys. Res. 106, 29207–29219, 2001; Gopalswamy, N.S., Lara, A., Manoharan, P.K. et al. An empirical model to predict the 1-AU arrival of interplanetary shocks. Adv. Space Res. 36, 2289–2294, 2005] were employed to attempt to identify the solar sources. It is found that the models identify several potential CMEs as possible sources for each of the superstorms. The two Gopalswamy et al. models give the possible sources for the first superstorm as CMEs on 2330 UT 4 November 2004 or on 1454 UT 5 November 2004. For the second superstorm, the possible solar source was a CME that on 0754 UT 5 November 2004 or one that occurred on 1206 UT 5 November 2004. We note that other propagation models sometimes agree and other times disagree with the above results. It is concluded that during high solar/interplanetary activity intervals such as this one, the exact solar source is difficult to identify. More refined propagation models are needed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号