首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1341篇
  免费   103篇
  国内免费   338篇
航空   604篇
航天技术   636篇
综合类   260篇
航天   282篇
  2024年   8篇
  2023年   29篇
  2022年   26篇
  2021年   69篇
  2020年   40篇
  2019年   43篇
  2018年   33篇
  2017年   38篇
  2016年   51篇
  2015年   33篇
  2014年   72篇
  2013年   60篇
  2012年   59篇
  2011年   85篇
  2010年   82篇
  2009年   93篇
  2008年   68篇
  2007年   49篇
  2006年   50篇
  2005年   57篇
  2004年   32篇
  2003年   51篇
  2002年   44篇
  2001年   49篇
  2000年   67篇
  1999年   71篇
  1998年   70篇
  1997年   53篇
  1996年   50篇
  1995年   41篇
  1994年   63篇
  1993年   32篇
  1992年   21篇
  1991年   14篇
  1990年   19篇
  1989年   20篇
  1988年   15篇
  1987年   9篇
  1986年   13篇
  1984年   3篇
排序方式: 共有1782条查询结果,搜索用时 984 毫秒
341.
混合不确定系统的鲁棒稳定性问题可以转化为一有理函数簇边界的H范数检验问题.为了减小计算复杂性,对一类线性部分仿射取决于变化参数的混合不确定系统,探讨了其数值求解方法.结果表明在固定的频率上边界对象的象是复平面上的一圆弧.对此文中获得了一个新的最大圆弧范数计算公式并诱导出一个可在有限频率范围内进行边界检验的算法.大大减小了计算量.  相似文献   
342.
电子干扰对低可观测飞行器飞行路径规划的影响   总被引:3,自引:0,他引:3  
为了提高巡航导弹的低空突防能力,在分析电子干扰对雷达网威胁区域的影响后认为:在多重干扰条件下,雷达探测空间会顺着干扰方向产生内凹和偏移,因此,建立了新的雷达探测空间模型.采用空间对象间拓扑关系推理方法建立了飞行器飞行路径规划目标函数中雷达威胁指数模型,然后改进了飞行器飞行路径规划模型,并在此基础上进行了巡航导弹飞行路径规划的软件仿真.仿真结果表明:考虑电子干扰对雷达威胁区域的影响情况下规划的飞行路径能够回避雷达威胁,有效提高飞行器低空突防能力.  相似文献   
343.
韩波  李云飞  范锐 《飞机设计》2023,43(1):55-57,67
为了完成飞机起落架应急放系统的设计,以某型飞机起落架应急放气压能源容量为研究对象,结合具体设计要求,完成飞机起落架应急放气压能源容量的初步设计。再结合 AMEsim 软件平台建立起落架应急放气动系统的仿真模型,对起落架应急放气压能源容量的设计参数及性能进行仿真分析。结果表明,起落架应急放气压能源容量满足设计要求,可以为飞机起落架应急放气压能源容量的设计提供一些经验和结论。  相似文献   
344.
基于遗传算法的液体火箭发动机参数优化   总被引:1,自引:0,他引:1  
建立了液体火箭发动机系统设计的仿真模型和多目标优化模型,采用组合优化策略和遗传算法,针对全流量补燃循环发动机,进行了不同设计变量和目标函数下发动机性能参数的优化,求得全局最优解.计算结果表明,遗传算法是解决该类问题的有效方法,可为其它类似发动机的优化提供一定的指导作用.   相似文献   
345.
小推力航天器的地月低能转移轨道   总被引:5,自引:1,他引:4  
徐明  徐世杰 《航空学报》2008,29(4):781-787
 在限制性四体模型下研究基于小推力方式的地月低能转移问题,通过借助于平动点轨道的相空间结构来揭示小推力转移的机理。重点研究了小推力转移自由飞行段的构造:经由LL1点穿越获得最小能量的低能转移;而经由LL1点Halo轨道穿越,得到(M,N)圈穿越轨道;由于Halo轨道相对于平动点增加了一维度的选择,根据(2,2)圈穿越轨道构造该转移的自由飞行段。在地球势阱逃逸和月球势阱捕获段,分别设计了合适的小推力的控制律及发动机开/关机时间,成功实施近地球段的小推力加速和近月球段的减速。尽管未对所得到的结果进行优化,所得转移轨道的燃料消耗也与类似边界条件的SMART-1轨道基本一致。  相似文献   
346.
Geosynchronous Earth Orbit (GEO) satellites are widely used because of their unique characteristics of high-orbit and remaining permanently in the same area of the sky. Precise monitoring of GEO satellites can provide a key reference for the judgment of satellite operation status, the capture and identification of targets, and the analysis of collision warning. The observation using ground-based optical telescopes plays an important role in the field of monitoring GEO targets. Different from distant celestial bodies, there is a relative movement between the GEO target and the background reference stars, which makes the conventional observation method limited for long focal length telescopes. CCD drift-scan photoelectric technique is applied on monitoring GEO targets. In the case of parking the telescope, the good round images of the background reference stars and the GEO target at the same sky region can be obtained through the alternating observation of CCD drift-scan mode and CCD stare mode, so as to improve the precision of celestial positioning for the GEO target. Observation experiments of GEO targets were carried out with 1.56-meter telescope of Shanghai Astronomical Observatory. The results show that the application of CCD drift-scan photoelectric technique makes the precision of observing the GEO target reach the level of 0.2″, which gives full play to the advantage of the long focal length of the telescope. The effect of orbit improvement based on multi-pass of observations is obvious and the prediction precision of extrapolating to 72-h is in the order of several arc seconds in azimuth and elevation.  相似文献   
347.
天文观测卫星普遍采用动中探测模式开展空间探测任务。为了实现动中探测姿态机动模式的地面有效验证,设计了整星机动集成测试方案。设计惯性空间基准的地面动力学仿真,满足惯性空间扫描仿真;设计整星各分系统间高精度时间统一系统,为整星机动测试提供统一基准;基于STK与Matlab接口模块,设计基于实时遥测数据的可视化判读系统,可提高测试判读实时性与准确度。整星测试结果表明,该方案有效验证了动中探测任务中姿态机动功能的正确性和指标符合情况,为开展整星地面测试和在轨应用提供了参考。  相似文献   
348.
This paper presents the mechanical design of a new robotic telescope that was designed and built to acquire lunar spectral measurements from the science pod of NASA's ER-2 aircraft while flying at an altitude of 70,000 feet (21.34 km). The robotic telescope used a double gimbal design that allowed for target tracking in azimuth and elevation. In addition to the challenging and restrictive geometry of the science pod, each component needed to be carefully selected to ensure that they could withstand the operating conditions at high altitude such as harsh temperatures extending as low as −54 °C and atmospheric pressure less than 1.05 psi (7.23 kPa). Due to the cold temperatures, low atmospheric pressure and the likely exposure to moisture, high strength industrial linear actuators were used to create an adjustable linkage system that controlled the pointing and tracking of the telescope. Although unconventional, this allowed for a robust design that outperformed the team's expectations by tracking the Moon for 40 min with an average tracking error under 0.05°. The results presented within this paper were acquired during a first set of engineering test flights, with further scientific missions to follow.  相似文献   
349.
《中国航空学报》2020,33(8):2189-2203
This paper presents a novel design method of the Mission Success Space (MSS) for the evaluation on aircraft contribution effectiveness. MSS concept was proposed for giving success criterion of a mission and judging the success by conventional mission effectiveness with regards to the aircraft capabilities. This space is created by the Mission Success Function (MSF) and the original Effectiveness Index Space (EIS) where empirical equations are usually assumed to be MSFs. Based on this MSS concept, this paper firstly defines the MSS-based evaluation, then further summarizes the evaluation process of the Contribution to System-of-Systems (CSS). More importantly, based on the thought of Inverse Design (ID), a new design method of MSF is presented comprehensively analyzing aircraft’s CSS in a combat mission without using any empirical MSF. The definition of MSS based ID is given and the design procedure is sequentially introduced. Two different confrontation cases are depicted with many details as the simulation validation: Air-to-ground and Penetration. There are two design variables considered for designing MSS in the latter case while only one for the former. However, in both cases, the best design is given by evaluating the Gaussian fitting performance of CSS.  相似文献   
350.
This article aims to understand the motion of the charged particles trapped in the Earth’s inner magnetosphere. The emphasis is on identifying the numerical scheme, which is appropriate to characterize the trajectories of the charged particles of different energies that enter the Earth’s magnetosphere and get trap along the magnetic field lines. These particles perform three different periodic motions, namely: gyration, bounce, and azimuthal drift. However, often, the gyration of the particle is ignored, and only the guiding center of the particle is traced to reduce the computational time. It is because the simulation of all three motions (gyro, bounce, and drift) together needed a robust numerical scheme, which has less numerical dissipation. We have developed a three-dimensional test particle simulation model in which the relativistic equation of motion is solved numerically using the fourth and sixth-order Runge-Kutta methods. The stability of the simulation model is verified by checking the conservation of total kinetic energy and adiabatic invariants linked with each type of motion. We found that the sixth-order Runge-Kutta method is suitable to trace the complete trajectories of both proton and electron of a wide energy range, 5 keV to 250 MeV for L = 2  6. We have estimated the bounce and drift periods from the simulations, and they are found to be in good agreement with the theory. The study implies that a simulation model with sixth-order Runge-Kutta method can be applied to the time-vary, non-analytical form of magnetic configuration in future studies to understand the dynamics of charged particles trapped in Earth’s magnetosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号