首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2384篇
  免费   267篇
  国内免费   291篇
航空   1319篇
航天技术   732篇
综合类   314篇
航天   577篇
  2024年   8篇
  2023年   54篇
  2022年   49篇
  2021年   71篇
  2020年   75篇
  2019年   79篇
  2018年   69篇
  2017年   62篇
  2016年   89篇
  2015年   95篇
  2014年   157篇
  2013年   119篇
  2012年   163篇
  2011年   177篇
  2010年   142篇
  2009年   126篇
  2008年   143篇
  2007年   154篇
  2006年   142篇
  2005年   147篇
  2004年   100篇
  2003年   117篇
  2002年   91篇
  2001年   90篇
  2000年   61篇
  1999年   48篇
  1998年   60篇
  1997年   38篇
  1996年   26篇
  1995年   31篇
  1994年   44篇
  1993年   28篇
  1992年   17篇
  1991年   23篇
  1990年   22篇
  1989年   15篇
  1988年   8篇
  1987年   1篇
  1984年   1篇
排序方式: 共有2942条查询结果,搜索用时 31 毫秒
171.
结合低轨卫星简化动力学定轨算法,以及不同几何信息精度条件下的纯几何定轨和动力定轨精度比较,定量分析星载双频GPS实现精密定轨过程中的主要因素,得到星载GPS接收机性能设计所需的关键技术指标,为卫星精密定轨系统的顶层设计提供了科学合理的参考依据。  相似文献   
172.
卫星设计过程信息分析的方法研究   总被引:1,自引:1,他引:0  
赵飞  刘霞 《航天器工程》2007,16(4):51-55
在综合分析现有卫星设计信息分析技术的基础上,将总体数据规划的思想引入卫星设计过程的信息分析,提出了一种利用信息工程论下的总体数据规划和并行工程下的设计结构矩阵相结合的技术进行卫星设计信息分析的新方法。深入讨论了从任务分析着手构建数据模型的思想,研究了设计结构矩阵的分解和撕裂算法,并以卫星总体设计方案阶段为例,具体说明在这种方法指导下,如何实现卫星设计的信息分析。  相似文献   
173.
针对我国第一个月球探测器的特点,对星载网络数据保护做了专门的设计。文章着重介绍了嫦蛾一号卫星星载数据高可靠性保护的设计方案与具体实现情况。  相似文献   
174.
杨朝旭  郭毅  雷廷万  李荣冰 《航空学报》2020,41(6):523456-523456
可控的过失速机动是先进战斗机超机动性能的重要标志,飞机飞行包线的扩大已超出传统的大气数据系统测量范围,可靠的迎角、侧滑角、总压、静压等飞行大气数据是制约先进战斗机过失速机动中飞行控制的关键因素。以中国推力矢量验证机为对象,基于过失速机动飞行试验的数据,开展大气参数估计与验证研究。结合过失速机动的时间与空间特性,研究了基于风速、地速、空速矢量和惯性姿态、导航参数的大气参数融合计算方法;针对过失速大迎角状态下飞机周围气流非定常、模型非线性导致的融合大气参数误差的复杂特性,进一步构建深度神经网络,对机动状态融合迎角、侧滑角的强非线性误差进行拟合。仿真和飞行试验表明:该方法可在大迎角飞行状态下实现主要大气参数的融合估计,过失速机动过程中融合迎角误差优于2.3°,融合得到的大气参数可为过失速大迎角机动飞行控制提供可靠的大气参数状态反馈。  相似文献   
175.
Global Navigation Satellite Systems (GNSS), in particular the Global Positioning System (GPS), have been widely used for high accuracy geodetic positioning. The Least Squares functional models related to the GNSS observables have been more extensively studied than the corresponding stochastic models, given that the development of the latter is significantly more complex. As a result, a simplified stochastic model is often used in GNSS positioning, which assumes that all the GNSS observables are statistically independent and of the same quality, i.e. a similar variance is assigned indiscriminately to all of the measurements. However, the definition of the stochastic model may be approached from a more detailed perspective, considering specific effects affecting each observable individually, as for example the effects of ionospheric scintillation. These effects relate to phase and amplitude fluctuations in the satellites signals that occur due to diffraction on electron density irregularities in the ionosphere and are particularly relevant at equatorial and high latitude regions, especially during periods of high solar activity. As a consequence, degraded measurement quality and poorer positioning accuracy may result.  相似文献   
176.
Currently, ground-based Global Navigation Satellite System (GNSS) stations of the International GNSS Service (IGS) are distributed unevenly around the world. Most of them are located on the mainland, while only a small part of them are scattered on some islands in the oceans. As a consequence, many unreasonable zero values (in fact negative values) appear in Vertical Total Electron Content (VTEC) of European Space Agency (ESA) and Center for Orbit Determination in Europe (CODE) IONEX products, especially in 2008 and 2009 when the solar activities were rather quiet. To improve this situation, we directly implement non-negative physical constraints of ionosphere for global ionosphere maps (GIM) with spherical harmonic functions. Mathematically, we propose an inequality-constrained least squares method by imposing non-negative inequality constraints in the areas where negative VTEC values may occur to reconstruct GIM models. We then apply the new method to process the IGS data in 2008. The results have shown that the new algorithm efficiently eliminates the unwanted behavior of negative VTEC values, which could otherwise often be seen in the current CODE and ESA GIM products in both middle and high latitude areas of the Southern Hemisphere (45°S∼90°S) and the Northern Hemisphere (50°N∼90°N). About 64% of GPS receivers’ DCBs have been significantly improved. Finally, we compare the GIM results between with and without the inequality constraints, which has clearly shown that the GIM result with inequality constraints is significantly better than that without the inequality constraints. The inequality-constrained GIM result is also highly consistent with the final IGS products in terms of root mean squared (RMS) and mean VTEC.  相似文献   
177.
Doppler Orbitography Radiopositioning Integrated by Satellite (DORIS) and Global Positioning System (GPS) techniques are similarly affected by propagation delays in the neutral atmosphere (troposphere) and hence make use of similar data processing strategies for reducing this effect. We compare Zenith Tropospheric Delays (ZTDs) estimated from 52 DORIS and GPS station pairs co-located at 35 sites over the 2005–2008 period. We find an overall systematic negative mean bias of −4 mm and a median bias of −2 mm, with a large site-to-site scatter and especially stronger biases over South America, potentially linked to remaining problems related to the South Atlantic Anomaly (SAA) in the current DORIS data processing. The standard deviation of ZTD differences is in the range 4–12 mm over the globe (8 mm on average), with larger values located in the southern hemisphere. The spatial variability of differences is consistent with previous work but remains largely unexplained. DORIS is shown to be much less sensitive to instrumental changes than GPS (only the switch from Alcatel to Starec antenna at Toulouse is detected as an offset of −4 mm in the ZTD time series). On the opposite, discontinuities and spurious annual signals are found in the GPS ZTD solutions. A discontinuity of +5 mm is found on 5 November 2006, linked to the switch from relative to absolute GPS antenna models used in the data processing. The use of modified GPS antennas (e.g. at GODE) or improved antenna models is shown to reduce the spurious annual signal (e.g. from 5 mm to 2 mm at METS). Overall, the agreement between both techniques is good, though DORIS shows a significantly larger random scatter. The high stability and good spatial and temporal coverage make DORIS a potential candidate technique for meteorology and climate studies as long as reasonable time averaging can be applied (e.g. differences are reduced from 8.6 to 2.4 mm with 5-day averages) and no real-time application is considered. This technique could be considered as a potential contributor to Global Geodetic Observing System (GGOS) for climatology.  相似文献   
178.
The occurrence of ionospheric scintillations with S4 ? 0.2 was studied using GPS measurements at Guilin, China (25.29°N, 110.33°E; geomagnetic: 15.04°N, 181.98°E), a station located near the northern crest of the equatorial anomaly. The results are presented for data collected from January 2009 to March 2010. The results show that nighttime amplitude scintillations only took place in February and March of the considered years, while daytime amplitude scintillations occurred in August and December of 2009. Nighttime amplitude scintillations, observed in the south of Guilin, always occurred with phase scintillations, TEC (Total Electron Content) depletions, and ROT (Rate Of change of TEC) fluctuations. However, TEC depletions and ROT fluctuations were weak during daytime amplitude scintillations, and daytime amplitude scintillations always took place simultaneously for most of the GPS satellites which appeared over Guilin in different azimuth directions. Ground-based GPS scintillation/TEC observations recorded at Guilin and signal-to-noise-ratio (SNR) measurements obtained from GPS-COSMIC radio occultation indicate that nighttime and daytime scintillations are very likely caused by ionospheric F region irregularities and sporadic E, respectively. Moreover, strong daytime amplitude scintillations may be associated with the plasma density enhancements in ionospheric E region caused by the Perseid and Geminid meteor shower activities.  相似文献   
179.
With a network of ground-based ionosondes distributed around the world, the ionospheric peak electron density and its height measured by FORMOSAT-3/COSMIC satellites in terms of GPS radio occultation technique are extensively examined in this article. It is found that, in spite of the latitude, the mean values of the peak electron density measured by COSMIC satellites are systematically smaller than those observed by ground-based ionosondes. The discrepancy between them is dependent on the latitude, namely, it is small in low and mid-latitudes and large in high-latitude region. Moreover, statistical analysis shows that the slopes of the regression line that is best fitted to the scatter diagram of occultation-retrieved peak electron density (ordinate axis) versus ionosonde-observed peak density (abscissa axis) are universally less than one. This feature is believed to be the result of path average effect of non-uniform distribution of the electron density along the GSP ray during the occultation. A comparison between COSMIC-measured peak height and ionosonde-derived peak height hmF2 indicates that the former is systematically higher than the latter. The difference in the two can be as large as 20% or more in equatorial and low-latitude regions. This result implies that the peak height hmF2 derived from the virtual height through true height analysis based on Titheridge method seems to underestimate the true peak height. The correlation between COSMIC and ionosonde peak electron densities is analyzed and the result reveals that correlation coefficient seems to be dependent on the fluctuation of the occultation-retrieved electron density profile. The correlation will be higher (lower) for the electron density profiles with smaller (larger) fluctuations. This feature suggests that the inhomogeneous distribution of the electron density along the GPS ray path during the occultation plays an important role affecting the correlation between COSMIC and ionosonde measurements.  相似文献   
180.
This paper studies the efficiency of geomagnetic solar flare effects (gsfe) in X solar flare detection; so during the period 1999–2007 a comparison between solar flare (sf) observed by satellites of the Geostationary Operational Environmental Satellite (GOES) programme and gsfe published by the Service International des Indices Geomagnetiques (SIIG) is made.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号