首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   28篇
  国内免费   32篇
航空   93篇
航天技术   92篇
综合类   20篇
航天   33篇
  2023年   3篇
  2022年   6篇
  2021年   6篇
  2020年   1篇
  2019年   14篇
  2018年   4篇
  2017年   2篇
  2016年   4篇
  2015年   6篇
  2014年   11篇
  2013年   9篇
  2012年   16篇
  2011年   10篇
  2010年   8篇
  2009年   22篇
  2008年   22篇
  2007年   19篇
  2006年   13篇
  2005年   7篇
  2004年   4篇
  2003年   5篇
  2002年   6篇
  2001年   3篇
  2000年   6篇
  1999年   6篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   8篇
  1994年   5篇
  1993年   3篇
  1991年   2篇
  1990年   1篇
  1984年   1篇
排序方式: 共有238条查询结果,搜索用时 31 毫秒
51.
The early phases of three flares, observed by the Nobeyama Radio Heliograph, are studied. Nonthermal and thermal radio sources are identified by comparison with soft X-ray images taken by the Soft X-ray Telescope onboard the Yohkoh satellite. Two of the flares are mainly of nonthermal origin and their location coincides with one of the footpoints of soft X-ray loops. Another flare has both thermal and nonthermal components which start to brighten simultaneously. This suggests that particle acceleration and plasma compression develop simultaneously.  相似文献   
52.
We have analysed energetic storm particle (ESP) events in 116 interplanetary (IP) shocks driven by front-side full and partial halo coronal mass ejections (CMEs) with speeds >400 km s?1during the years 1996–2015. We investigated the occurrence and relationships of ESP events with several parameters describing the IP shocks, and the associated CMEs, type II radio bursts, and solar energetic particle (SEP) events. Most of the shocks (57 %) were associated with an ESP event at proton energies >1 MeV.The shock transit speeds from the Sun to 1 AU of the shocks associated with an ESP event were significantly greater than those of the shocks without an ESP event, and best distinguished these two groups of shocks from each other. The occurrence and maximum intensity of the ESP events also had the strongest dependence on the shock transit speed compared to the other parameters investigated. The correlation coefficient between ESP peak intensities and shock transit speeds was highest (0.73 ± 0.04) at 6.2 MeV. Weaker dependences were found on the shock speed at 1 AU, Alfvénic and magnetosonic Mach numbers, shock compression ratio, and CME speed. On average all these parameters were significantly different for shocks capable to accelerate ESPs compared to shocks not associated with ESPs, while the differences in the shock normal angle and in the width and longitude of the CMEs were insignificant.The CME-driven shocks producing energetic decametric–hectometric (DH) type II radio bursts and high-intensity SEP events proved to produce also more frequently ESP events with larger particle flux enhancements than other shocks. Together with the shock transit speed, the characteristics of solar DH type II radio bursts and SEP events play an important role in the occurrence and maximum intensity of ESP events at 1 AU.  相似文献   
53.
The transport of energetic particles in the presence of magnetic turbulence can exhibit a variety of regimes different from the standard quasilinear diffusion. Here we discuss a number of solar and space problems where nonquasilinear diffusion is found, and then we illustrate anomalous transport regimes, for which the mean square deviation grows nonlinearly with time. In particular, we concentrate on superdiffusive regimes, and show what is the theoretical framework which is to be used to describe superdiffusion. We discuss the results of numerical simulations which show that superdiffusive and subdiffusive regimes are possible, and describe data analyses which allow to single out the superdiffusive transport from the observation of energetic particle profiles upstream of interplanetary shocks. The implications of superdiffusion on the efficiency of wave particle interactions are also discussed.  相似文献   
54.
X-ray flares and acceleration processes are in one complex of sporadic solar events (together with CMEs, radio bursts, magnetic field dissipation and reconnection). This supposes the connection (if not physical, but at least statistical) between characteristics of the solar energetic proton events and flares. The statistical analysis indicates that probability and magnitude of the near-Earth proton enhancement depends heavily on the flare importance and their heliolongitude. These relations may be used for elaboration of the forecasting models, which allow us to calculate probability of the solar proton events from the X-ray observations.  相似文献   
55.
Modelization of solar energetic particle (SEP) events aims at revealing the general scenario of SEP injection and interplanetary propagation and relies on in situ measurements of SEP distributions. In this paper, we study to what extent the LEFS60 and LEMS30 electron telescopes of the Electron Proton Alpha Monitor (EPAM) on board the Advanced Composition Explorer are able to scan pitch-angle distributions during near-relativistic electron events. We estimate the percentage of the pitch-angle cosine range scanned by both telescopes for a given magnetic field configuration. We obtain that the pitch-angle coverage is always higher for LEFS60 than for LEMS30. Therefore, LEFS60 provides more information of the directional distribution of the observed particles. The aim of the paper is to study the relevance of the coverage when fitting LEFS60 particle measurements in order to infer the solar injection and the interplanetary transport conditions. By studying synthetic electron events, we obtain that at least 70% of the pitch-angle cosine range needs to be scanned by the telescope. Otherwise, multiple scenarios can explain the data.  相似文献   
56.
Dynamical features of proton fluxes at high and middle latitudes were studied based on data measured by Sun-synchronous low-altitude (800 km height) polar-orbiting three NOAA series satellites: POES 15, 16, and 17 during the geomagnetic storm on January, 21–22, 2005. Data from three satellites that passed the Northern hemisphere along different MLTs allow reconstructing the longitudinal distribution of the proton fluxes. Measurements of protons with energies of 30–80 keV and 80–240 keV (the ring current energy range) by 0- and 90-detectors were used to evaluate and compare the longitudinal asymmetry of proton flux distribution measured in the regions equatorward and poleward of the isotropic boundary. It was found that during all the phases of the geomagnetic storm distribution of the maximum flux of precipitating protons (0-detector data) is sufficiently asymmetric. The maximal flux position along MLT is moving from pre-midnight sector in quiet time to post-midnight one before and during SSC and moving back during recovery phase. The longitudinal distribution of precipitation maxima demonstrates the local increase in afternoon sector (approximately at 13:30 MLT) and decrease in the dusk one during SSC. These features are evident consequence of the magnetosphere compression. To identify the origin of the particles, the locations of maximum fluxes have been projected to the magnetosphere. It was determined that during geomagnetic storm main and recovery phases maximum fluxes were measured at latitudes poleward of the isotropic boundary. To evaluate the trapped particle flux asymmetry, the particle fluences (90-detector data) were calculated along the satellite orbit from L = 2 to the isotropic boundary. The total fluences of trapped particles calculated along the satellite orbit show regular asymmetry between dusk and dawn during main and recovery phases. The maximal intensity of proton fluxes of both investigated populations located poleward and equatorward of the isotropic boundary is achieved during SSC. The total flux measured during crossing the anisotropic region can be considered as a proxy for ring current injection rate.  相似文献   
57.
An important ingredient in theories for diffusion of charged particles across a mean magnetic field are velocity correlation functions along and across that field. In the current article we present an analytical study of these functions by investigating the two-dimensional Fokker–Planck equation. We show that for an isotropic pitch-angle Fokker–Planck coefficient, the parallel velocity correlation function is an exponential function in agreement with the standard model used previously. For other forms of the pitch-angle diffusion coefficient, however, we find non-exponential forms. Also a new, velocity correlation function based, approach for deriving the so-called Earl-relation is presented. This new derivation is more systematic and simpler than previous derivations. We also discuss higher-order velocity correlations and the applicability of the quasi-normal hypothesis in particle diffusion theory. Furthermore, we compute velocity correlation functions across the mean field and develop an alternative theory for perpendicular diffusion.  相似文献   
58.
An overview is presented of magnetic-field-related effects in the solar wind (SW) interaction with the local interstellar medium (LISM) and the different theoretical approaches used in their investigation. We discuss the possibility that the interstellar magnetic field (ISMF) introduces north–south and east–west asymmetries of the heliosphere, which might explain observational data obtained by the Voyager 1 and Voyager 2 spacecraft. The SW–LISM interaction parameters that are responsible for the deflection of the interstellar neutral hydrogen flow from the direction of propagation of neutral helium in the inner heliosheath are outlined. The possibility of a strong ISMF, which increases the heliospheric asymmetry and the H–He flow deflection, is discussed. The effect of the combination of a slow-fast solar wind during solar minimum over the Sun’s 11-year activity cycle is illustrated. The consequences of a tilt between the Sun’s magnetic and rotational axes are analyzed. Band-like areas of an increased magnetic field distribution in the outer heliosheath are sought in order to discover regions of possible 2–3 kHz radio emission.  相似文献   
59.
从理论上分析了微粒重叠对测量结果的影响,通过简化模型,给出了对粒子数测量结果的补偿曲线。并建立了分析图象分辨率、微粒识别率和识别阈值三者关系的模型,给出了在识别阈值不变情况下,图象分辨率与微粒识别率的关系图,从而可以选择优化的图象分辨率和微粒识别阈值。  相似文献   
60.
Ion-induced nucleation has been suggested to be a potentially important mechanism for atmospheric aerosol formation. Ions are formed in the background atmosphere by galactic cosmic rays. A possible connection between galactic cosmic rays and cloudiness has been However, the predictions of current atmospheric nucleation models are highly uncertain because the models are usually based on the liquid drop model that estimates cluster thermodynamics based on bulk properties (e.g., liquid drop density and surface tension). Sulfuric acid (H2SO4) and water are assumed to be the most important nucleating agents in the free troposphere. Measurements of the molecular thermodynamics for the growth and evaporation of cluster ions containing H2SO4 and H2O were performed using a temperature-controlled laminar flow reactor coupled to a linear quadrupole mass spectrometer as well as a temperature-controlled ion trap mass spectrometer. The measurements were complemented by quantum chemical calculations of the cluster ion structures. The analysis yielded a complete set of H2SO4 and H2O binding thermodynamics extending from molecular cluster ions to the bulk, based on experimental thermodynamics for the small clusters. The data were incorporated into a kinetic aerosol model to yield quantitative predictions of the rate of ion-induced nucleation for atmospheric conditions. The model predicts that the negative ion-H2SO4-H2O nucleation mechanism is an efficient source of new particles in the middle and upper troposphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号