首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   34篇
  国内免费   3篇
航空   37篇
航天技术   105篇
综合类   1篇
航天   43篇
  2023年   5篇
  2022年   5篇
  2021年   6篇
  2020年   6篇
  2019年   11篇
  2018年   5篇
  2017年   5篇
  2016年   1篇
  2015年   5篇
  2014年   13篇
  2013年   15篇
  2012年   14篇
  2011年   17篇
  2010年   9篇
  2009年   12篇
  2008年   9篇
  2007年   8篇
  2006年   5篇
  2005年   11篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   4篇
  2000年   1篇
  1999年   5篇
  1998年   6篇
  1997年   2篇
  1995年   1篇
排序方式: 共有186条查询结果,搜索用时 156 毫秒
81.
82.
地球静止轨道光学遥感器的发展以及遥感器分辨率的不断提高,使得光学遥感器的口径越来越大,大口径反射镜正在成为制约遥感器性能、质量和研制成本的关键因素。本文主要围绕2m口径的超轻型反射镜开展研究,分析了定位和支撑系统的主要功能,提出了适合大口径、超轻型反射镜的定位和支撑系统方案,分析了该方案的基本原理和实现形式。  相似文献   
83.
采用单轴双太阳帆板空间站的一种姿态定向模式   总被引:2,自引:0,他引:2  
董文强 《航天控制》2008,26(2):27-30
采用单轴双帆板供电和单框架控制力矩陀螺(SGCMG)作为执行机构的倾斜轨道空间站,当太阳方向与轨道面夹角较大时,帆板的光照条件不易保证,为此本文针对这种类型的空间站设计了一种姿态定向模式以保证帆板的光照条件,并通过在阴影区姿态机动,利用重力梯度力矩对SGCMG进行卸载。仿真结果表明,该姿态定向模式满足太阳帆板的光照条件,重力梯度力矩卸载方法保证了SGCMG中的角动量不超出给定的范围。  相似文献   
84.
In a previous paper by Schmidt et al. (2008), from CHAllenging Minisatellite Payload (CHAMP) Global Positioning System (GPS) radio occultation data, a comparison was made between a Gaussian filter applied to the “complete” temperature profile and to its “separate” tropospheric and stratospheric height intervals, for gravity wave analyses. It was found that the separate filtering method considerably reduces a wave activity artificial enhancement near the tropopause, presumably due to the isolation process of the wave component. We now propose a simple approach to estimate the uncertainty in the calculation of the mean specific wave potential energy content, due exclusively to the filtering process of vertical temperature profiles, independently of the experimental origin of the data. The approach is developed through a statistical simulation, built up from the superposition of synthetic wave perturbations. These are adjusted by a recent gravity wave (GW) climatology and temperature profiles from reanalyses. A systematic overestimation of the mean specific wave potential energy content is detected and its variability with latitude, altitude, season and averaging height interval is highlighted.  相似文献   
85.
The state-of-the-art electrostatic accelerometers (EA) used for the retrieval of non-gravitational forces acting on a satellite constitute a core component of every dedicated gravity field mission. However, due to their difficult-to-control thermal drift in the low observation frequencies, they are also one of the most limiting factors of the achievable performance of gravity recovery. Recently, a hybrid accelerometer consisting of a regular EA and a novel cold atom interferometer (CAI) that features a time-invariant observation stability and constantly recalibrates the EA has been developed in order to remedy this major drawback. In this paper we aim to assess the value of the hybrid accelerometer for gravity field retrieval in the context of GRACE-type and Bender-type missions by means of numerical closed-loop simulations where possible noise specifications of the novel instrument are considered and different components of the Earth’s gravity field signal are added subsequently. It is shown that the quality of the gravity field solutions is mainly dependent on the CAI’s measurement accuracy. While a low CAI performance (10?8 to 10?9?m/s2/Hz1/2) does not lead to any gains compared to a stand-alone EA, a sufficiently high one (10?11?m/s2/Hz1/2) may improve the retrieval performance by over one order of magnitude. We also show that improvements which are limited to low-frequency observations may even propagate into high spherical harmonic degrees. Further, the accelerometer performance seems to play a less prominent role if the overall observation geometry is improved as it is the case for a Bender-type mission. The impact of the accelerometer measurements diminishes further when temporal variations of the gravity field are introduced, pointing out the need for proper de-aliasing techniques. An additional study reveals that the hybrid accelerometer is – contrary to a stand-alone EA – widely unaffected by scale factor instabilities.  相似文献   
86.
The application of the Global Positioning System (GPS) radio occultation (RO) method to the atmosphere enables the determination of height profiles of temperature, among other variables. From these measurements, gravity wave activity is usually quantified by calculating the potential energy through the integration of the ratio of perturbation and background temperatures between two given altitudes in each profile. The uncertainty in the estimation of wave activity depends on the systematic biases and random errors of the measured temperature, but also on additional factors like the selected vertical integration layer and the separation method between background and perturbation temperatures. In this study, the contributions of different parameters and variables to the uncertainty in the calculation of gravity wave potential energy in the lower stratosphere are investigated and quantified. In particular, a Monte Carlo method is used to evaluate the uncertainty that results from different GPS RO temperature error distributions. In addition, our analysis shows that RO data above 30 km height becomes dubious for gravity waves potential energy calculations.  相似文献   
87.
The Earth’s gravity field can be measured with high precision by constructing the purely gravitational orbit of the inner-satellite in Inner-formation Flying System (IFS), which is independently proposed by Chinese scholars and offers a new way to carry out gravity field measurement by satellite without accelerometers. In IFS, for the purpose of quickly evaluating the highest degree of recovered gravity field model and geoid error as well as analyzing the influence of system parameters on gravity field measurement, an analytical formula was established by spectral analysis method. The formula can reflect the analytical relationship between gravity field measurement performance and system parameters such as orbit altitude, the inner-satellite orbit determination error, the inner-satellite residual disturbances, data sampling interval and total measurement time. This analytical formula was then corrected by four factors introduced from numerical simulation of IFS gravity field measurement. By comparing computation results from corrected analytical formula and the actual gravity field measurement performance by CHAMP, the correctness and rationality of this analytical formula were verified. Based on this analytical formula, the influences of system parameters on IFS gravity field measurement were analyzed. It is known that gravity field measurement performance is a monotone decreasing function of orbit altitude, the inner-satellite orbit determination error, the inner-satellite residual disturbances, data sampling interval and the reciprocal of total measurement time. There is a match relationship between the inner-satellite orbit determination error and residual disturbances, in other words, the change rate of gravity field measurement performance with one of them is seriously restricted by their relative size. The analytical formula can be used to quantitatively evaluate gravity field measurement performance fast and design IFS parameters optimally. It is noted that the analytical formula and corresponding conclusions are applied to any gravity satellite which measures gravity field by satellite perturbation orbit.  相似文献   
88.
We present results of the spectral analysis of data series of Doppler frequency shifted signals reflected from the ionosphere, using experimental data received at Kazan University, Russia. Spectra of variations with periods from 1 min to 60 days have been calculated and analyzed for different scales of periods. The power spectral density for spring and winter differs by a factor of 3–4. Local maxima of variation amplitude are detected, which are statistically significant. The periods of these amplitude increases range from 6 to 12 min for winter, and from 24 to 48 min for autumn. Properties of spectra for variations with the periods of 1–72 h have been analyzed. The maximum of variation intensity for all seasons and frequencies corresponds to the period of 24 h. Spectra of variations with periods from 3 to 60 days have been calculated. The maxima periods of power spectral density have been detected by the MUSIC method for the high spectral resolution. The detected periods correspond to planetary wave periods. Analysis of spectra for days with different level of geomagnetic activity shows that the intensity of variations for days with a high level of geomagnetic activity is higher.  相似文献   
89.
In the framework of satellite-only gravity field modeling, satellite laser ranging (SLR) data is typically exploited to recover long-wavelength features. This contribution provides a detailed discussion of the SLR component of GOCO02S, the latest release of combined models within the GOCO series. Over a period of five years (January 2006 to December 2010), observations to LAGEOS-1, LAGEOS-2, Ajisai, Stella, and Starlette were analyzed. We conducted a series of closed-loop simulations and found that estimating monthly sets of spherical harmonic coefficients beyond degree five leads to exceedingly ill-posed normal equation systems. Therefore, we adopted degree five as the spectral resolution for real data analysis. We compared our monthly coefficient estimates of degree two with SLR and Gravity Recovery and Climate Experiment (GRACE) time series provided by the Center for Space Research (CSR) at Austin, Texas. Significant deviations in C20 were noted between SLR and GRACE; the agreement is better for the non-zonal coefficients. Fitting sinusoids together with a linear trend to our C20 time series yielded a rate of (−1.75 ± 0.6) × 10−11/yr; this drift is equivalent to a geoid change from pole to equator of 0.35 ± 0.12 mm/yr or an apparent Greenland mass loss of 178.5 ± 61.2 km3/yr. The mean of all monthly solutions, averaged over the five-year period, served as input for the satellite-only model GOCO02S. The contribution of SLR to the combined gravity field model is highest for C20, and hence is essential for the determination of the Earth’s oblateness.  相似文献   
90.
Ionospheric variability impacts operational performances of a variety of technological systems, such as HF communication, Global Positioning System (GPS) navigation, and radar surveillance. The ionosphere is not only perturbed by geomagnetic inputs but is also influenced by atmospheric tides and other wave disturbances propagating from the troposphere to high altitudes. Atmospheric Gravity Waves (AGWs) excited by meteorological sources are one of the largest sources of mesoscale variability in the ionosphere. In this paper, Total Electron Content (TEC) data from networks of GPS receivers in the United States are analyzed to investigate AGWs in the ionosphere generated by convective thunderstorms. Two case studies of convectively generated gravity waves are presented. On April 4, 2014 two distinct large convective systems in Texas and Arkansas generated two sets of concentric AGWs that were observed in the ionosphere as Traveling Ionospheric Disturbances (TIDs). The period of the observed TIDs was 20.8 min, the horizontal wavelength was 182.4 km, and the horizontal phase speed was 146.4 m/s. The second case study shows TIDs generated from an extended squall line on December 23, 2015 stretching from the Gulf of Mexico to the Great Lakes in North America. Unlike the concentric wave features seen in the first case study, the extended squall line generated TIDs, which exhibited almost plane-parallel phase fronts. The TID period was 20.1 min, its horizontal wavelength was 209.6 km, and the horizontal phase speed was 180.1 m/s. The AGWs generated by both of these meteorological events have large vertical wavelength (>100 km), which are larger than the F2 layer thickness, thus allowing them to be discernible in the TEC dataset.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号