首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   7篇
  国内免费   5篇
航空   16篇
航天技术   72篇
综合类   2篇
航天   3篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   7篇
  2019年   2篇
  2018年   6篇
  2017年   1篇
  2016年   1篇
  2014年   5篇
  2013年   9篇
  2012年   7篇
  2011年   6篇
  2010年   4篇
  2009年   3篇
  2008年   9篇
  2007年   4篇
  2006年   1篇
  2005年   3篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1990年   2篇
  1988年   1篇
排序方式: 共有93条查询结果,搜索用时 109 毫秒
41.
张佳龙  闫建国  张普 《航空学报》2020,41(1):323385-323385
针对"长机-僚机"近距编队队形因风场扰动而不能保持期望队形的问题,首先,提出了一种自适应队形保持控制的方法,该方法可用于抵消因风场不确定性对无人机的横侧向和前行方向所产生的距离误差,同时能够保持无人机编队稳定飞行。其次,由于风场的不确定性会引起"长机-僚机"之间的动力学发生变化,因此设计了一种基于"长机-僚机"相对运动模型的自适应控制律用以估计风场在3个方向的大小,进而控制无人机之间的相对运动以消除风场不确定性所产生的距离误差并保持速度的一致性,最终实现保持期望的队形。再次,通过构建合理的李雅普诺夫函数,证明无人机编队在风场干扰下能够保持编队稳定飞行,同时"长机-僚机"之间相对横向、横侧向以及纵向的距离误差均接近零。最后,通过仿真验证:所提出的自适应控制方法具有良好的鲁棒性,这为工程实践提供理论依据。  相似文献   
42.
The ionospheric plasma density can be significantly disturbed during magnetic storms. In the conventional scenario of ionospheric storms, the negative storm phases with plasma density decreases are caused by neutral composition changes, and the positive storm phases with plasma density increases are often related to atmospheric gravity waves. However, recent studies show that the global redistribution of the ionospheric plasma is dominated primarily by electric fields during the first hours of magnetic storms. In this paper, we present the measurements of ionospheric disturbances by the DMSP satellites and GPS network during the magnetic storm on 6 April 2000. The DMSP measurements include the F region ion velocity and density at the altitude of ∼840 km, and the GPS receiver network provides total electron content (TEC) measurements. The storm-time ionospheric disturbances show the following characteristics. The plasma density is deeply depleted in a latitudinal range of ∼20° over the equatorial region in the evening sector, and the depletions represent plasma bubbles. The ionospheric plasma density at middle latitudes (20°–40° magnetic latitudes) is significantly increased. The dayside TEC is increased simultaneously over a large latitudinal range. An enhanced TEC band forms in the afternoon sector, goes through the cusp region, and enters the polar cap. All the observed ionospheric disturbances occur within 1–5 h from the storm sudden commencement. The observations suggest that penetration electric fields play a major role in the rapid generation of equatorial plasma bubbles and the simultaneous increases of the dayside TEC within the first 2 h during the storm main phase. The ionospheric disturbances at later times may be caused by the combination of penetration electric fields and neutral wind dynamo process.  相似文献   
43.
Accurate sea level trend determination is fundamentally related to calibration of both the instrument as well as to investigate if there are linear trends in the set of standard geophysical and range corrections applied to the sea level observations. Long term changes in range corrections can leak into the observed sea level record and be interpreted as part of the sea level trend. Particularly if these exhibit anomalous trend close to the satellite calibration sites.  相似文献   
44.
We have examined the ionospheric plasma irregularities that were recorded by using three ground-based receivers of the global positioning system (GPS) located at Brazilian longitudes during the period of a complete solar cycle, 1995–2005. The statistic results show that ionospheric irregularities are very easy to occur in December solstice months but rare to occur in June solstice months. Besides, the occurrence rates of irregularities in both December and June solstice months are little dependent on solar activity. However, in equinoctial months, the development of irregularities is obviously dependent on solar activity. There is a new finding in this study that if strong irregularities are distinguished from moderate ones, their occurrence rates would increase with solar activity during the December solstice months.  相似文献   
45.
The height structure of TID characteristics is studied on the base of the electron density profiles measured by two beams of the incoherent scatter radar and DPS-4 ionosonde. The height profiles of the TID propagation characteristics are obtained by means of cross-correlation and spectrum analysis of the radar and ionosonde data. The noticeable height variability of the TID parameters is observed. The variability is explained by interference of several TIDs. The obtained TID propagation characteristics are compared with known results of the TID studies.  相似文献   
46.
This paper presents an analysis of a set of time series that represent foF2 disturbances during storm conditions, using clustering tools. The time series under study have been drawn from ionospheric observations obtained from eight European middle latitude ionosondes during a significant number of storm-time intervals and they are divided into eight groups according to the latitude (middle to low and middle to high) and the local time of the observation point at storm onset (afternoon, evening, morning, prenoon). The time series in each group have been analyzed using clustering-based methods. Specifically, each time series has been represented using two different ways of representation: the first is the raw representation while the second is through the parameters of the autoregressive (AR) model that best represents it. For each representation a hierarchy of clusterings is produced via the complete link algorithm. The two produced hierarchies are combined to a single one and the final clustering results are extracted from the produced hierarchy. The obtained results are in close agreement with the theoretical formulations concerning ionospheric storm effects at middle latitudes. In addition, they may be proved useful in the development of more accurate ionospheric forecasting methods.  相似文献   
47.
GALOCAD project “Development of a Galileo Local Component for the nowcasting and forecasting of atmospheric disturbances affecting the integrity of high precision Galileo applications” aims to perform a detailed study on ionospheric small- and medium-scale structures and to assess the influence of these structures on the reliability of Galileo precise positioning applications. GPS-derived TEC (total electron content) is obtained from the Belgium Dense Network (BDN), consisting of 67 permanent GPS stations. An empirical 3-D model is developed for studying these ionospheric structures. The model, named LLT model, described temporal variations of TEC in latitude/longitude frame (46°, 52°)N and (−1°, 11°)E. The spatial variations of TEC are modeled by Tchebishev base functions, while the temporal variations are described by a trigonometric basis. To fit the model to the data, the observed area is divided into bins with (1° × 1°) geographic scale and 6 min on time axis. LLT model is made flexible, with varying number of coefficients along each axis. This allows different degree of smoothing, which is the key element of the present approach. Model runs with higher number of coefficients, capturing in details medium-scale TEC structures are subtracted from results obtained with smaller number of coefficients; the latter represent the background ionosphere. The residual structures are localized and followed as they travel across the observed area. In this way, the size, velocity, and direction of the irregular structures are obtained.  相似文献   
48.
By using data from GPS receivers we detected huge-amplitude solitary large-scale traveling acoustic-gravity waves (LS AGW) which manifested themselves as perturbations of total electron content (TEC) of duration of about 40 min. Originated in the auroral area after significant alterations of geomagnetic field intensity during geomagnetic storms on 29–30 October 2003, LS disturbances propagated with a velocity about 1000–1200 m/s and caused generation of secondary small-scale (SS) waves with time period of 2–10 min. Such SS structure followed the solitary intensive AGW at a distance more than 4000 km. However, we observed such phenomenon only within the territory with high values of “vertical” TEC and steep gradients of TEC. Apparently, these conditions are necessary for generation of SS waves due to propagation of LS AGW.  相似文献   
49.
The present study reports the analysis of GPS based TEC for our station Surat (21.16°N, 72.78°E) located at the northern crest of equatorial anomaly region in India at times close to some earthquake events (M ? 5) during the year 2009 in India and its neighbouring regions. The TEC data used in the study are obtained from GPS Ionospheric Scintillation and TEC Monitoring (GISTM) system. The TEC data has been analysed corresponding to 11 earthquakes in low solar activity period and quiet geomagnetic condition. We found that, out of 11 cases of earthquakes (M > 5) there were seven cases in which enhancement in TEC occurred on earthquake day and in other four cases there was depletion in TEC on earthquake day. The variation in refractivity prior to earthquake was significant for the cases in which the epicentre lied within a distance of 600 km from the receiving station. By looking into the features on temporal enhancement and depletion of TEC a prediction was made 3–2 days prior to an earthquake (on 28 October 2009 in Bhuj – India). The paper includes a brief discussion on the method of potentially identifying an impending earthquake from ionospheric data.  相似文献   
50.
The occurrence characteristics of medium-scale travelling ionospheric disturbances (MSTIDs) were investigated using the Tasman International Geospace Environment Radar (TIGER). From the occurrence study of sea echoes, we found two maxima, one pre-noon and the other after noon. They are less obvious with increase of magnetic activities, and more obvious when Bz is northwards. It is suggested that this maxima were related to fore- and after-noon maxima in the distribution of net field-aligned currents flowing from the magnetosphere to the ionosphere, and that these two regions were sources of atmospheric gravity waves (AGWs) due to enhancement of Hall conductivities in the ionosphere. The Lorentz force is suggested to be a possible mechanism for the excitation of MSTIDs in the dayside ionosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号