首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   326篇
  免费   16篇
  国内免费   3篇
航空   14篇
航天技术   313篇
航天   18篇
  2023年   11篇
  2022年   2篇
  2021年   14篇
  2020年   15篇
  2019年   15篇
  2018年   16篇
  2017年   1篇
  2016年   2篇
  2015年   5篇
  2014年   18篇
  2013年   26篇
  2012年   18篇
  2011年   26篇
  2010年   22篇
  2009年   27篇
  2008年   20篇
  2007年   13篇
  2006年   6篇
  2005年   17篇
  2004年   10篇
  2003年   8篇
  2002年   7篇
  2001年   10篇
  2000年   1篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   5篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   4篇
  1990年   6篇
  1987年   1篇
排序方式: 共有345条查询结果,搜索用时 312 毫秒
81.
The aim of the study is to explore whether age at death from cardiovascular diseases depends on solar and geomagnetic activities. The data were collected for 1970–1978 in Novosibirsk, West Siberia, for industrial workers of Siberian origin. The Spearman correlations are computed between linearly detrended lifespan and daily or monthly physical variables to establish immediate (lag, L = 0), delayed (L = 1–3 days) and cumulative (L = ±30 days) influences. Significant correlations ranging from r = −0.26 to r = −0.30 for L from 0 to 3, respectively, are found for men between solar radio flux at wavelength 10.7 cm and age at death from acute myocardial infarction (AMI) but not from acute heart failure, ischemic heart disease and stroke. For AMI, women’s longevity displays an opposite (direct) association with the average solar character occurred at the calendar month of death. The index of geomagnetic activity, Ap, exhibits inverse association with longevity for the AMI stratum for both sexes. GLM univariate procedure revealed higher contribution of Ap to the variance of lifespan compared to season of death. The individual age at death susceptibility to cosmic influences is found to depend upon solar activity at year of birth. It is concluded that associations between the lifespan for cardiovascular decedents and the indices of solar and geomagnetic activities at time of death and of birth are cause-of-death- and sex-specific.  相似文献   
82.
We present a new technique for improving ionospheric models of nighttime E-region electron densities under geomagnetic storm conditions using TIMED/SABER measurements of broadband 4.3 μm limb radiance. The response of E-region electron densities to geomagnetic activity is characterized by SABER-derived NO+(v) 4.3 μm Volume Emission Rates (VER). A storm-time E-region electron density correction factor is defined as the ratio of storm-enhanced NO+(v) VER to a quiet-time climatological average NO+(v) VER, which will be fit to a geomagnetic activity index in a future work. The purpose of this paper is to demonstrate the feasibility of our technique in two ways. One, we compare storm-to-quiet ratios of SABER-derived NO+(v) VER with storm-to-quiet ratios of electron densities measured by Incoherent Scatter Radar. Two, we demonstrate that NO+(v) VER can be parameterized by widely available geomagnetic activity indices. The storm-time correction derived from NO+(v) VER is applicable at high-latitudes.  相似文献   
83.
Degradation of transionospheric radio signals and operation failures during ionospheric disturbances constitute a crucial factor of space weather influence on radio engineering satellite systems performance. We found that during the main phase of strong magnetic storms in 2000–2003 when the auroral oval expands into mid-latitudes, its southern boundary develops a region with intense small-scale electron density irregularities. Such irregularities may cause strong amplitude scintillations of GPS signals at both GPS operating frequencies. The another consequence of it was significant random GPS signal phase fluctuations, breaking-down of signal tracking, and sharp increasing of GPS positioning errors as a result.  相似文献   
84.
Variations in the high-latitude ionosphere structure during March 22, 1979 geomagnetic storm are examined. Electron density Ne and temperature Te from the Cosmos-900 satellite, NmF2, Ne and He+ from the ISS-b satellite, precipitation of soft electrons from the Intercosmos-19 satellite, and the global picture of the auroral electron precipitation from the DMSP, TIROS and P78 satellites are used. These multi-satellite databases allow us to investigate the storm-time variations in the locations of the following ionospheric structures: the day-time cusp, the equatorial boundary of the diffuse auroral precipitation (DPB), the main ionospheric trough (MIT), the day-time trough, the ring ionospheric trough (RIT) and the light ions trough (LIT). The variations in NmF2, Ne, He+ and Te in the high-latitude ionosphere for the different local time sectors are analyzed also. The features of the high-latitude ionospheric response to a strong magnetic storm are described.  相似文献   
85.
Data from the archive of the International GNSS Services (IGS) were used to study the seasonal variations of Total Electron Content (TEC) over three stations located at different latitudes in the southern hemisphere during the geomagnetic storms of 11 January, 6 April, 8 June, and 13 October 2000, representing storms that occurred in summer, autumn equinox, winter and spring equinox, respectively. The percentage TEC deviation with respect to reference values differs substantially from season to season. A strong seasonal anomaly and clear equinoctial asymmetry in TEC response to the storms were observed. Weak and short-lived positive TEC deviations as well as strong and long-lasting negative trends were observed in summer storm during the main and recovery phases respectively over the high and low latitudes whereas in winter storm, the highest positive TEC deviations was recorded during the main phase over the entire latitudes. TEC enhancement dominated all the stations during the autumn (March) equinox storm while TEC depletion was majorly observed during the spring (September) equinox. All these variations find their explanations in the thermospheric composition change and circulation. Future work with direct or modeled measurement of atomic Oxygen to molecular Nitrogen ratio (O/N2), large number of storms and other possible factors such as variations in storm’s intensity and local time dependence of the storm onset is expected to validate the observations in this study.  相似文献   
86.
The ionospheric responses to High-Intensity Long Duration Continuous Auroral Electrojet Activity (HILDCAA) event which happened following the CIR-driven storm were studied over the southern hemisphere mid-latitude in the African sector. The 13–15 April 2005 event was analysed to understand some of the mechanisms responsible for the ionospheric changes during HILDCAA event. The ionosonde critical frequency of F2 layer (foF2) and Global Navigation Satellite System (GNSS) Total Electron Content (TEC) were used to analyse the ionospheric responses. The daytime increase in foF2 and TEC values were observed on 13 April 2005. The TEC and foF2 enhancement could be attributed to Large Scale Traveling Ionospheric Disturbances (LSTIDs), increase in thermospheric neutral composition changes, Prompt Penetration Electric Field (PPEF) and an expansion of Equatorial Ionization Anomaly (EIA) to the mid-latitude.  相似文献   
87.
We report the existence of rapid variations in (effective) geomagnetic cutoff rigidity (Rc) between the equatorial and Antarctic zones adjacent to the Andes Mountains, revealed by the variation rate of geomagnetic cutoff rigidity (VRc) in the period 1975–2010. Our analysis is based on empirical records and theoretical models of the variations in cosmic rays and on the structure of geomagnetic fields. These have given us a different view of variations in Rc in time and space along the 70°W meridian, where secular variations in the geomagnetic field are strongly influenced by the proximity of the South Atlantic Magnetic Anomaly (SAMA), one of the most important characteristics of the terrestrial magnetic field that affects our planet, close from the equator to the 50°S parallel and from South America to South Africa. The VRc presents rapid changes in mid-latitudes where SAMA exerts its influence despite the existence of smooth changes in the geomagnetic field. This shows that these changes occur mainly in the spatial configuration, rather than in the temporal evolution of Rc. The analysis was performed using measurements from the Chilean Network of Cosmic Rays and Geomagnetism Observatories, equipped with BF-3 and latest generation He-3 neutron monitors, Fluxgate magnetometers, geomagnetic reference field (IGRF) and Tsyganenko 2001 model (just for completeness).  相似文献   
88.
MAGDAS PEN was established on 19th September 2019 as one of the MAGDAS observatory arrays located at Universiti Sains Malaysia (USM) (5.15°, 100.50°). The main objective of the MAGDAS project is to monitor global electromagnetic and the ambient plasma density in the geospace environment. This installation has contributed to a better understanding of the Sun-Earth coupling system. This paper presents the installation process of one of the MAGDAS magnetometers named YU-8 T magnetic sensor and provides a preliminary analysis of geomagnetic HDZ components amplitude-time that was observed at PEN station. A one-month HDZ-geomagnetic field data was processed from 1st November to 30th November 2019. The daily variations with a consistent pattern in delta H geomagnetic field components are observed throughout the day with eastward electric field effects that are observed during solar peak hours. The delta H-component gradually increases around 0700LT and reaches the maximum reading at 1300LT with a range of value ~ 40-70nT. The value slowly decreases that started from 1400LT until the night time. The reading during the night time shows a constant variation with magnitude varies in between ?10nT to + 10nT. The average H-component value of the night time is used as the baseline for the observation system. Overall, the observed trends portray a good sign of solar quiet field and Sq with no solar-terrestrial disturbances.  相似文献   
89.
Dynamical features of proton fluxes at high and middle latitudes were studied based on data measured by Sun-synchronous low-altitude (800 km height) polar-orbiting three NOAA series satellites: POES 15, 16, and 17 during the geomagnetic storm on January, 21–22, 2005. Data from three satellites that passed the Northern hemisphere along different MLTs allow reconstructing the longitudinal distribution of the proton fluxes. Measurements of protons with energies of 30–80 keV and 80–240 keV (the ring current energy range) by 0- and 90-detectors were used to evaluate and compare the longitudinal asymmetry of proton flux distribution measured in the regions equatorward and poleward of the isotropic boundary. It was found that during all the phases of the geomagnetic storm distribution of the maximum flux of precipitating protons (0-detector data) is sufficiently asymmetric. The maximal flux position along MLT is moving from pre-midnight sector in quiet time to post-midnight one before and during SSC and moving back during recovery phase. The longitudinal distribution of precipitation maxima demonstrates the local increase in afternoon sector (approximately at 13:30 MLT) and decrease in the dusk one during SSC. These features are evident consequence of the magnetosphere compression. To identify the origin of the particles, the locations of maximum fluxes have been projected to the magnetosphere. It was determined that during geomagnetic storm main and recovery phases maximum fluxes were measured at latitudes poleward of the isotropic boundary. To evaluate the trapped particle flux asymmetry, the particle fluences (90-detector data) were calculated along the satellite orbit from L = 2 to the isotropic boundary. The total fluences of trapped particles calculated along the satellite orbit show regular asymmetry between dusk and dawn during main and recovery phases. The maximal intensity of proton fluxes of both investigated populations located poleward and equatorward of the isotropic boundary is achieved during SSC. The total flux measured during crossing the anisotropic region can be considered as a proxy for ring current injection rate.  相似文献   
90.
This study reports on ionospheric disturbances that occurred in the early morning hours in the South American–Atlantic sector during a few intense/super storm events. The events were observed at latitudes close to the southern crest of the equatorial ionization anomaly (EIA) as an unusual intensification of the F region electron density peak at local times when the EIA is not usually developed. All the events were observed at pre dawn-morning hours, under conditions of northward interplanetary geomagnetic field. Large scale traveling ionospheric disturbances that are launched during highly disturbed conditions and/or equatorward surges in the thermospheric meridional winds seem to be the most probable causes of the observed disturbances.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号