首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   326篇
  免费   16篇
  国内免费   3篇
航空   14篇
航天技术   313篇
航天   18篇
  2023年   11篇
  2022年   2篇
  2021年   14篇
  2020年   15篇
  2019年   15篇
  2018年   16篇
  2017年   1篇
  2016年   2篇
  2015年   5篇
  2014年   18篇
  2013年   26篇
  2012年   18篇
  2011年   26篇
  2010年   22篇
  2009年   27篇
  2008年   20篇
  2007年   13篇
  2006年   6篇
  2005年   17篇
  2004年   10篇
  2003年   8篇
  2002年   7篇
  2001年   10篇
  2000年   1篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   5篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   4篇
  1990年   6篇
  1987年   1篇
排序方式: 共有345条查询结果,搜索用时 31 毫秒
101.
对哈雷、百武和海尔-波普三颗慧星在不同时间、不同位置的情况下5次过近地点可能引起对地球磁层影响进行了资料分析和统计研究,指出,根据等离子体彗尾的特征,完全可以对磁层引起扰动,但是这种扰动有严格的制约条件,不是每次彗星过境都很容易对地球电磁环境产生影响。  相似文献   
102.
常规弹丸在使用地磁算法测量滚转角的过程中,常将偏航角设为0°解算弹丸滚转角。当弹丸在飞行过程中偏航角发生变化时,滚转角解算精度受到一定影响。针对偏航角变化带来的误差与多种因素有关,且规律不清楚。在建立偏航角误差系数的基础上,使用Matlab软件建立了弹丸在不同偏航角、俯仰角、射向条件下的误差模型。首先建立了横风修正的质点弹道模型,通过蒙特卡罗方法仿真弹丸的轨迹分布,分析了弹载环境下磁测算法的滚转角误差,并验证了误差系数的准确性。通过仿真验证,误差系数可以较准确地表示滚转角误差与偏航角变化之间的关系,误差系数计算的误差与理论误差的差值小于10%,为后续实弹试验做好理论准备。  相似文献   
103.
This study investigates the morphology of the GPS TEC responses in the African Equatorial Ionization Anomaly (EIA) region to intense geomagnetic storms during the ascending and maximum phases of solar cycle 24 (2012–2014). Specifically, eight intense geomagnetic storms with Dst ≤ ?100 nT were considered in this investigation using TEC data obtained from 13 GNSS receivers in the East African region within 36–42°E geographic longitude; 29°N–10°S geographic latitude; ± 20°N magnetic latitude. The storm-time behavior of TEC shows clear positive and negative phases relative to the non-storm (median) behavior, with amplitudes being dependent on the time of sudden commencement of the storm and location. When a storm starts in the morning period, total electron content increases for all stations while a decrease in total electron content is manifested for a storm that had its sudden commencement in the afternoon period. The TEC and the EIA crest during the main phase of the storm is significantly impacted by the geomagnetic storm, which experiences an increase in the intensity of TEC while the location and spread of the crest usually manifest a poleward expansion.  相似文献   
104.
Taking advantage of the cutoff computations performed for more than a hundred locations from 1955 to 1995 [every 5 years; Shea, M.A., Smart, D.F. Vertical cutoff rigidities for cosmic ray stations since 1955, in: Proceedings of the ICRC 2001, Hamburg, Copernicus Gesellschaft, vol. 10, pp. 4063–4066, 2001], we carefully checked the relationship between the vertical cutoff rigidity and the McIlwain parameter introduced by Shea et al. [Shea, M.A., Smart, D.F., Gentile, L.C. Estimating cosmic ray vertical cutoff rigidities as a function of the McIlwain L-parameter for different epochs of the geomagnetic field. Phys. Earth Planet. Int., 48, 200–205, 1987]. We derived an updated algorithm that can be used outside the polar and equatorial regions, avoiding time consuming computations. Results for the European area and 1990 epoch suggest that the fast evaluation is accurate within 0.1 GV in 26 out of the 30 considered locations.  相似文献   
105.
This paper presents the first results of a new Arar-magnetometer station located (Geographic Coordinates: 30°50.2′N, 41°11.3′E) at Northern Border University in Saudi Arabia. The geomagnetic response detected by the station during a moderate magnetic storm of April 20, 2018 is examined as an initial study. The X-component of the magnetic field measured by the station showed a prompt increase coincident with the Sudden Storm Commencement (SSC) measured by the ACE satellite. The three components of the measured magnetic field were compared to the measured data from the nearest four INTERMAGNET stations as a test. The high rate of magnetic field digital data system of Arar-Magnetometer station with sampling rate of 0.1 s allowed us to study the geomagnetic pulsation at the northern region of the Arabian Peninsula for the first time, which will promote the research of space weather monitoring in that area.  相似文献   
106.
Errors in neutral atmospheric density are the dominant contributor to unrealistic orbital state-vector covariances in low Earth orbits (LEO). Density uncertainty is caused by model-uncertainty at spatial scales below and within the model resolution, as well as input-uncertainty of the environmental parameters supplied to the semi-empirical atmospheric model.The paper at hand provides multiple contributions. First, analytic equations are derived to estimate the relative density error due to an input parameter uncertainty in any of the environmental parameters supplied to the model. Second, it is shown on the example of uncertain geomagnetic activity information, how to compute the required inputs to facilitate the accurate estimation of the relative density error.A clamped cubic splining approach for the conversion from geomagnetic amplitude (ap) to the kp index is postulated to perform this uncertainty propagation, as other algorithms were found unsuitable for this task. Results of numerical simulations with three popular semi-empirical models are provided to validate the set of derived equations. It is found that geomagnetic input uncertainty is especially important to consider in case of low global geomagnetic activity. The findings seamlessly integrate with prior work by the authors to perform density-uncertainty considering orbit estimation.  相似文献   
107.
This work presents, for the first time, the analysis of the occurrence of ionospheric irregularities during geomagnetic storms at Tucumán, Argentina, a low latitude station in the Southern American longitudinal sector (26.9°S, 294.6°E; magnetic latitude 15.5°S) near the southern crest of the equatorial ionization anomaly (EIA). Three geomagnetic storms occurred on May 27, 2017 (a month of low occurrence rates of spread-F), October 12, 2016 (a month of transition from low to high occurrence rates of spread-F) and November 7, 2017 (a month of high occurrence rates of spread-F) are analyzed using Global Positioning System (GPS) receivers and ionosondes. The rate of change of total electron content (TEC) Index (ROTI), GPS Ionospheric L-band scintillation, the virtual height of the F-layer bottom side (h'F) and the critical frequency of the F2 layer (foF2) are considered. Furthermore, each ionogram is manually examined for the presence of spread-F signatures.The results show that, for the three events studied, geomagnetic activity creates favorable conditions for the initiation of ionospheric irregularities, manifested by ionogram spread-F and TEC fluctuation. Post-midnight irregularities may have occurred due to the presence of eastward disturbance dynamo electric fields (DDEF). For the May storm, an eastward over-shielding prompt penetration electric field, (PPEF) is also acting. A possibility is that the PPEF is added to the DDEF and produces the uplifting of the F region that helps trigger the irregularities. Finally, during October and November, strong GPS L band scintillation is observed associated with strong range spread-F (SSF), that is, irregularities extending from the bottom-side to the topside of the F region.  相似文献   
108.
In this study, the relationship between total electron content (TEC) and solar and geomagnetic parameters for Ankara station (39.7 N, 32.76 E), Turkey located in the mid-latitude ionosphere is investigated. In this context, F10.7 solar flux and Interplanetary Magnetic Fields (IMF) from solar parameters and Kp and Dst indices from geomagnetic parameters affecting on TEC are considered. The relationship between the variables is investigated by means of the statistical multiple regression model at the universal time (UT) (Local Time = UT + 2 h) 1200 and 2400 in the years when the 24th solar cycle was minimum (2007–2009) and maximum (2015). As a result, it is found that explainable rates by solar and geomagnetic parameters of TEC changes in 2007–2009 are lower than in 2015 at daytime, while the explainable rates in the solar minimum years are higher than those the maximum year at nighttime. To be higher than the solar maximum of explainable rate in the solar minimum years at nighttime may be related to the fact that the dynamics of the ionosphere is significantly different than expected in this deep minimum period. As expected in 2015, the relationship between TEC and independent parameters is greater at daytime than at nighttime.  相似文献   
109.
We present a joint analysis of longitude-temporal variations of ionospheric and geomagnetic parameters at middle and high latitudes in the Northern Hemisphere during the two severe magnetic storms in March and June 2015 by using data from the chains of magnetometers, ionosondes and GPS/GLONASS receivers. We identify the fixed longitudinal zones where the variability of the magnetic field is consistently high or low under quiet and disturbed geomagnetic conditions. The revealed longitudinal structure of the geomagnetic field variability in quiet geomagnetic conditions is caused by the discrepancy of the geographic and magnetic poles and by the spatial anomalies of different scales in the main magnetic field of the Earth. Variations of ionospheric parameters are shown to exhibit a pronounced longitudinal inhomogeneity with changing geomagnetic conditions. This inhomogeneity is associated with the longitudinal features of background and disturbed structure of the geomagnetic field. During the recovery phase of a storm, important role in dynamics of the mid-latitude ionosphere may belong to wave-like thermospheric disturbances of molecular gas, propagating westward for several days. Therefore, it is necessary to extend the time interval for studying the ionospheric effects of strong magnetic storms by a few days after the end of the magnetospheric source influence, while the disturbed regions in the thermosphere continues moving westward and causes the electron density decrease along the trajectories of propagation.  相似文献   
110.
Results pertaining to the response of the low latitude ionosphere to a major geomagnetic storm that occurred on 24 August 2005 are presented. The dual frequency GPS data have been analyzed to retrieve vertical total electron content at two Indian low latitude stations (IGS stations) Hyderabad (Geographic latitude 17°20′N, Geographic longitude 78°30′E, Geomagnetic latitude 8.65°N) and Bangalore (Geographic latitude 12°58′N, Geographic longitude 77°33′E, Geomagnetic latitude 4.58°N). These results show variation of GPS derived total electron content (TEC) due to geomagnetic storm effect, local low latitude electrodynamics response to penetration of high latitude convection electric field and effect of modified fountain effect on GPS–TEC in low latitude zone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号