首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   274篇
  免费   16篇
  国内免费   1篇
航空   15篇
航天技术   262篇
航天   14篇
  2023年   11篇
  2022年   2篇
  2021年   12篇
  2020年   15篇
  2019年   15篇
  2018年   14篇
  2017年   1篇
  2016年   2篇
  2015年   5篇
  2014年   14篇
  2013年   21篇
  2012年   13篇
  2011年   24篇
  2010年   20篇
  2009年   22篇
  2008年   20篇
  2007年   12篇
  2006年   6篇
  2005年   11篇
  2004年   8篇
  2003年   6篇
  2002年   3篇
  2001年   5篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1990年   6篇
  1984年   1篇
排序方式: 共有291条查询结果,搜索用时 62 毫秒
251.
Intense geomagnetic activity is known to give rise to large geomagnetically induced currents (GICs) in power transmission grids. Recordings of geomagnetic activity provide an efficient and economical way for power transmission system operators to assess GIC risks in retrospective studies. This study investigates local geomagnetic indicators (i.e., hourly peak value, hourly range indicator and hourly standard deviation) in order to determine their usefulness for understanding the drivers of GICs in the South African power network. Results show that the GICs have a higher correlation with the geomagnetic indicators derived from the East–West component of the horizontal geomagnetic field, than the indicators derived from the North–South component of the horizontal field. This directional dependence corresponds very well with the North–South orientation of the power lines feeding the power transformers at the South African Grassridge electrical substation GIC site. It therefore follows that, the geoelectric field driving the GICs at Grassridge is North–South oriented. Further, it is shown that the hourly range indicator has a higher correlation with the GICs than the hourly standard deviation for this particular network configuration.  相似文献   
252.
The paper presents an empirical model of the total electron content (TEC) response to the geomagnetic activity described by the Kp-index. The model is built on the basis of TEC measurements covering the region of North America (50°W–150°W, 10°N–60°N) for the period of time between October 2004 and December 2009. By using a 2D (latitude-time) cross-correlation analysis it is found that the ionospheric response to the geomagnetic activity over the considered geographic region and at low solar activity revealed both positive and negative phases of response. The both phases of the ionospheric response have different duration and time delay with respect to the geomagnetic storm. It was found that these two parameters of the ionospheric response depend on the season and geographical latitude. The presence of two phases, positive and negative, of the ionospheric response imposed the implementation of two different time delay constants in order to properly describe the two different delayed reactions. The seasonal dependence of the TEC response to geomagnetic storms is characterized by predominantly positive response in winter with a short (usually ∼5–6 h) time delay as well as mainly negative response in summer with a long (larger than 15 h) time delay. While the TEC response in March and October is more close to the winter one the response in April and September is similar to the summer one.  相似文献   
253.
F2层对地磁扰动的响应   总被引:3,自引:1,他引:2  
利用37个电离层垂直探测站1974-1986年的数据,采用f0F2与地磁ap指数相关分析的方法,首次得到一个太阳活动周期各年东亚-澳大利亚扇区,欧洲-非洲扇区和美洲-东太平洋扇区F2层对地磁扰动响应随地磁纬度的分布.结果指出,地磁高纬和中纬地区为负响应,低纬和赤道地区为正响应,大约在±30°附近换向.最大正响应在磁赤道附近,最大负响应在地磁纬度±50°附近,最大负响应的幅度大于最大正响应的幅度.存在明显的经度差别和南北半球不对称性.  相似文献   
254.
The relationship of auroral activity indices (AE, Kp, SME) with interplanetary medium parameters during the main phase of magnetic storms is studied. For the period 1990–2020, 142 magnetic storms driven by (41) Sheath, (61) CIR, and (40) ICME events are selected. It is found that the correlation coefficient between average values of the SME index and the SW electric field for Sheath (r = 0.75) is close to correlation coefficients for CIR and ICME events. The correlation coefficient between Kpaver&Eswaver (r = 0.72) is higher than the correlation coefficient between AEaver&Eswaver (r = 0.63) at the main phase of magnetic storms induced by the Sheath events. It is shown that average values of SW dynamic pressure and IMF σB fluctuations correlate each other for all types of SW.  相似文献   
255.
In this paper, we present and discuss the response of the ionospheric F-region in the American sector during the intense geomagnetic storm which occurred on 24–25 October 2011. In this investigation ionospheric sounding data obtained of 23, 24, 25, and 26 October 2011 at Puerto Rico (United States), Jicamarca (Peru), Palmas, São José dos Campos (Brazil), and Port Stanley, are presented. Also, the GPS observations obtained at 12 stations in the equatorial, low-, mid- and high-mid-latitude regions in the American sector are presented. During the fast decrease of Dst (about ∼54 nT/h between 23:00 and 01:00 UT) on the night of 24–25 October (main phase), there is a prompt penetration of electric field of magnetospheric origin resulting an unusual uplifting of the F region at equatorial stations. On the night of 24–25 October 2011 (recovery phase) equatorial, low- and mid-latitude stations show h′F variations much larger than the average variations possibly associated with traveling ionospheric disturbances (TIDs) caused by Joule heating at high latitudes. The foF2 variations at mid-latitude stations and the GPS-VTEC observations at mid- and low-latitude stations show a positive ionospheric storm on the night of 24–25 October, possibly due to changes in the large-scale wind circulation. The foF2 observations at mid-latitude station and the GPS-VTEC observations at mid- and high-mid-latitude stations show a negative ionospheric storm on the night of 24–25 October, probably associated with an increase in the density of molecular nitrogen. During the daytime on 25 October, the variations in foF2 at mid-latitude stations show large negative ionospheric storm, possibly due to changes in the O/N2 ratio. On the night of 24–25, ionospheric plasma bubbles (equatorial irregularities that extended to the low- and mid-latitude regions) are observed at equatorial, low- and mid-latitude stations. Also, on the night of 25–26, ionospheric plasma bubbles are observed at equatorial and low-latitude regions.  相似文献   
256.
The effect of geomagnetic storms on the F2 region was studied by calculating the deviation, ΔfoF2, of foF2 during 40 magnetic storms, ranging from moderate (Dst < −50 nT) to very intense (Dst < −200 nT) of the 21st solar cycle. In order to study the variation of storm-time foF2 with latitude, season and storm strength, ionosonde data were obtained from eight stations spanning a latitudinal range of +60–−60°. The stations chosen lay in a narrow longitudinal range of 140–151°, so that local time difference between the stations is practically negligible. The features exhibited by positive and negative phases were essentially different. The storm time ΔfoF2 clearly exhibited a latitudinal variation and this variation were found to be coupled with the seasonal variation. As for the variation with storm intensity, though ΔfoF2 was found to vary even between two storms of almost equal intensity, the amplitude of a positive or negative phase, |ΔfoF2max| showed a distinct upper limit for each intensity category of storms.  相似文献   
257.
Seventeen severe magnetic storms occurred in the period 2000 through 2005. In addition there was a major magnetic storm in March 1989. During each of these storms there was an anomaly in the operation of the system of Signalization, Centralization and Blockage (SCB) in some divisions of the high-latitude (∼58 to 64°N) Russian railways. This anomaly was revealed as false traffic light signals about the occupation of the railways. These signals on the Northern railways appeared exactly during the main phases of the strongest part of the geomagnetic storms characterized by high geomagnetic indices Dst and Kp (Ap). Moreover, the durations of these anomalies coincided with the period of the greatest geomagnetic disturbances in a given event. Geomagnetically induced currents (GICs) during significant strengthening of geomagnetic activity are concluded as the obvious reasons for such kind of anomalies.  相似文献   
258.
The International Reference Ionosphere IRI-2001 model contains geomagnetic activity dependence based on an empirical storm time ionospheric correction (STORM model). An extensive validation of the STORM model for the middle latitude region has been performed. In this paper the ability of the STORM model to predict foF2 values at high latitudes is analyzed. For this, ionosonde data obtained at Base Gral. San Martin (68.1°S, 293°E) are compared with those obtained by the IRI-2001 model with or without storm correction during four geomagnetic storms that occurred in 2000 (Rz12 = 117) and 2001 (Rz12 = 111). The results show that predicted values with the STORM model follow the behaviour of foF2 experimental data better than without the STORM model. The relative deviation between measured and predicted foF2 reaches values of up to 24% and 43% with and without the STORM model in IRI-2001, during the main phase of the storms. In order to explain increases of electron density that occurred prior to the storm onset and also decreases of electron density observed during the first part of the recovery of the storm, possible physical mechanisms are discussed.  相似文献   
259.
The study of the possible effect of solar variability on living organisms is one of the most controversial issues of present day science. It has been firstly and mainly carried on high latitudes, while at middle and low latitudes this study is rare. In the present review we focused on the work developed at middle and low geomagnetic latitudes of America. At these geomagnetic latitudes the groups consistently dedicated to this issue are mainly two, one in Cuba and the other in Mexico.  相似文献   
260.
Estimating the magnetic storm effectiveness of solar and associated interplanetary phenomena is of practical importance for space weather modelling and prediction. This article presents results of a qualitative and quantitative analysis of the probable causes of geomagnetic storms during the 11-year period of solar cycle 23: 1996–2006. Potential solar causes of 229 magnetic storms (Dst ? −50 nT) were investigated with a particular focus on halo coronal mass ejections (CMEs). A 5-day time window prior to the storm onset was considered to track backward the Sun’s eruptions of halo CMEs using the SOHO/LASCO CMEs catalogue list. Solar and interplanetary (IP) properties associated with halo CMEs were investigated and correlated to the resulting geomagnetic storms (GMS). In addition, a comparative analysis between full and partial halo CME-driven storms is established. The results obtained show that about 83% of intense storms (Dst ? −100 nT) were associated with halo CMEs. For moderate storms (−100 nT < Dst ? −50 nT), only 54% had halo CME background, while the remaining 46% were assumed to be associated with corotating interaction regions (CIRs) or undetected frontside CMEs. It was observed in this study that intense storms were mostly associated with full halo CMEs, while partial halo CMEs were generally followed by moderate storms. This analysis indicates that up to 86% of intense storms were associated with interplanetary coronal mass ejections (ICMEs) at 1 AU, as compared to moderate storms with only 44% of ICME association. Many other quantitative results are presented in this paper, providing an estimate of solar and IP precursor properties of GMS within an average 11-year solar activity cycle. The results of this study constitute a key step towards improving space weather modelling and prediction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号