首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   526篇
  免费   69篇
  国内免费   78篇
航空   225篇
航天技术   346篇
综合类   13篇
航天   89篇
  2024年   2篇
  2023年   23篇
  2022年   9篇
  2021年   26篇
  2020年   37篇
  2019年   43篇
  2018年   35篇
  2017年   18篇
  2016年   24篇
  2015年   36篇
  2014年   31篇
  2013年   45篇
  2012年   32篇
  2011年   53篇
  2010年   35篇
  2009年   34篇
  2008年   32篇
  2007年   27篇
  2006年   11篇
  2005年   16篇
  2004年   17篇
  2003年   12篇
  2002年   7篇
  2001年   9篇
  2000年   3篇
  1999年   8篇
  1998年   4篇
  1997年   5篇
  1996年   4篇
  1995年   8篇
  1994年   1篇
  1993年   3篇
  1992年   10篇
  1991年   3篇
  1990年   7篇
  1989年   2篇
  1988年   1篇
排序方式: 共有673条查询结果,搜索用时 31 毫秒
31.
One minute resolution Polar Cap (PC) index was used for the analysis of magnetospheric dynamics. The 1995–2000 time series analysis revealed that the power spectrum of the PC-index fluctuations is a power law in a wide range of frequencies. However, the obtained exponents differ for low and high frequency regions. The probability distribution functions of the PC-index fluctuations show a strong non-gaussian shape, depending on the time of increment. This indicates that the PC-index exhibits intermittency, previously detected in solar wind and auroral electrojet index fluctuations. The PC-index probability distribution functions were fitted by the functional form proposed by Castaing et al. [Velocity probability density functions of high Reynolds number turbulence. Physica D. 46, 177–200, 1990] to describe intermittency phenomena in ordinary turbulent fluid flows. The agreement between the fitting parameters obtained for the PC index and those reported before for solar wind magnetic field fluctuations is within 30%; which is noticeably less than the difference between the same parameters of solar wind and the AE-index fluctuations. This fact indicates that the PC index reflects the solar wind influence on the high-latitude magnetosphere, especially during the summer.  相似文献   
32.
From September 7 to 8, 2017, a G4-level strong geomagnetic storm occurred, which seriously impacted on the Earth’s ionosphere. In this work, the global ionospheric maps released by Chinese Academy of Sciences are used to investigate the ionospheric responses over China and its adjacent regions during the strong storm. The prominent TEC enhancements, which mainly associated with the neutral wind and eastward prompt penetration electric field, are observed at equatorial ionization anomaly crests during the main phase of the storm on 8 September 2017. Compared with those on 8 September, the TEC enhancements move to lower-latitude regions during the recovery phase on 9 September. A moderate storm occurred well before the start of the strong storm causes similar middle-latitude TEC enhancements on 7 September. However, the weak TEC depletion is observed at middle and low latitude on 9–10 September, which could be associated with the prevailing westward disturbance electric field or storm-time neural composition changes. In addition, the storm-time RMS and STD values of the ionospheric TEC grids over China increase significantly due to the major geomagnetic storm. The maximum of the RMS reaches 12.0 TECU, while the maximum of the STD reaches 8.3 TECU at ~04UT on 8 September.  相似文献   
33.
《中国航空学报》2020,33(9):2420-2433
In this study, a neural adaptive controller is developed for a ground experiment with a spacecraft proximity operation. As the water resistance in the experiment is highly nonlinear and can significantly affect the fidelity of the ground experiment, the water resistance must be estimated accurately and compensated using an active force online. For this problem, a novel control algorithm combined with Chebyshev Neural Networks (CNN) and an Active Disturbance Rejection Control (ADRC) is proposed. Specifically, the CNN algorithm is used to estimate the water resistance. The advantage of the CNN estimation is that the coefficients of the approximation can be adaptively changed to minimize the estimation error. Combined with the ADRC algorithm, the total disturbance is compensated in the experiment to improve the fidelity. The dynamic model of the spacecraft proximity maneuver in the experiment is established. The ground experiment of the proximity maneuver that considers an obstacle is provided to verify the efficiency of the proposed controller. The results demonstrate that the proposed method outperforms the pure ADRC method and can achieve close-to-real-time performance for the spacecraft proximity maneuver.  相似文献   
34.
Using a cylindrical Langmuir probe and the authors’ proprietary two-channel pressure transducer, ionospheric plasma parameter distributions along the orbit of the Sich-2 satellite (Ukraine, 2011–2012) were measured. This paper is concerned with identifying the space–time location of ionospheric plasma disturbance sources, including the epicenters of actual earthquakes (before or during the satellite flyover) and incipient earthquakes on the subsatellite track, from the measured distributions of the electron density and temperature and the neutral particle temperature along the satellite orbit. To do this, the measured ionospheric plasma parameter distributions are connected to the coordinates on the subsatellite track.It is shown that local disturbances in the electron density and temperature and neutral particle temperature distributions in the satellite orbit in the ionosphere may serve as indicators of seismic activity on the subsatellite track. The epicenters of incipient earthquakes may be set off from other plasma parameter disturbance sources associated with seismic activity using information provided by special monitoring and survey centers that monitor the current seismic situation.  相似文献   
35.
In the presence of unknown disturbances and model parameter uncertainties, this paper develop a nonlinear backstepping sliding-mode controller (BSMC) for trajectory tracking control of a stratospheric airship using a disturbance-observer (DO). Compared with the conventional sliding mode surface (SMS) constructed by a linear combination of the errors, the new SMS manifold is selected as the last back-step error to improve independence of the adjustment of the controller gains. Furthermore, a nonlinear disturbance-observer is designed to process unknown disturbance inputs and improve the BSMC performances. The closed-loop system of trajectory tracking control plant is proved to be globally asymptotically stable by using Lyapunov theory. By comparing with traditional backstepping control and SMC design, the results obtained demonstrate the capacity of the airship to execute a realistic trajectory tracking mission, even in the presence of unknown disturbances, and aerodynamic coefficient uncertainties.  相似文献   
36.
In this paper, we investigate temporal and spatial magnetosphere response to the impact of interplanetary (IP) shocks with different inclinations and speeds on the Earth’s magnetosphere. A data set with more than 500 IP shocks is used to identify positive sudden impulse (SI+) events as expressed by the SuperMAG partial ring current index. The SI+ rise time (RT), defined as the time interval between compression onset and maximum SI+ signature, is obtained for each event. We use RT and a model suggested by Takeuchi et al. (2002) to calculate the geoeffective magnetospheric distance (GMD) in the shock propagation direction as a function of shock impact angle and speed for each event. GMD is a generalization of the geoeffective magnetosphere length (GML) suggested by Takeuchi et al. (2002), defined from the subsolar point along the X line toward the tail. We estimate statistical GMD and GML values which are then reported for the first time. We also show that, similarly to well-known results for RT, the highest correlation coefficient for the GMD and impact angle is found for shocks with high speeds and small impact angles, and the faster and more frontal the shock, the smaller the GMD. This result indicates that the magnetospheric response depends heavily on shock impact angle. With these results, we argue that the prediction and forecasting of space weather events, such as those caused by coronal mass ejections, will not be accurately accomplished if the disturbances’ angles of impact are not considered as an important parameter within model and observation scheme capabilities.  相似文献   
37.
强磁场扰动对宇宙线调制的统计研究   总被引:5,自引:2,他引:3  
对1978─1982太阳活动高年时发生的激波、强磁场扰动及激波与强磁场扰动共存这三类事件引起的宇宙线变化进行了统计研究,得到如下结果:(1)激波与强磁场扰动共存时引起的宇宙线强度下降最为显着;只有激波或强磁场扰动时,宇宙线的强度变化相对较小;(2)标志速度间断的激波是产生宇宙线Forbush下降的重要因素;(3)速度间断在强磁场扰动对宇宙线的调制中可能起一个触发的作用。   相似文献   
38.
Ionosphere response to severe geomagnetic storms that occurred in 2001–2003 was analyzed using data of global ionosphere maps (GIM), altimeter data from the Jason-1 and TOPEX satellites, and data of GPS receivers on-board CHAMP and SAC-C satellites. This allowed us to study in detail ionosphere redistribution due to geomagnetic storms, dayside ionospheric uplift and overall dayside TEC increase. It is shown that after the interplanetary magnetic field turns southward and intensifies, the crests of the equatorial ionization anomaly (EIA) travel poleward and the TEC value within the EIA area increases significantly (up to ∼50%). GPS data from the SAC-C satellite show that during the main phase of geomagnetic storms TEC values above the altitude of 715 km are 2–3 times higher than during undisturbed conditions. These effects of dayside ionospheric uplift occur owing to the “super-fountain effect” and last few hours while the enhanced interplanetary electric field impinged on the magnetopause.  相似文献   
39.
针对复杂气流扰动对无人机(UAV)航迹高度控制的影响,对存在复杂气流扰动下的定高控制策略、控制结构和控制器参数优化展开研究,实现高精度高度控制。基于线性自抗扰控制(LADRC)确定总体控制架构,设计扩张状态观测器(ESO)观测估计纵向高度通道和速度通道中存在的总扰动,在控制中引入扰动补偿,减小扰动对系统输出造成的影响。对UAV在飞行过程中存在的大气紊流扰动或离散突风等风干扰分析其功率谱密度,构造考虑风扰动对高度影响、时域响应特性和稳定裕度的综合目标函数,通过粒子群优化算法得到具有高精度、高抗干扰性能的控制器参数,优化中考虑风干扰的功率谱密度分布,减小了控制器参数设计的保守性。通过与常规比例-积分-微分(PID)控制器控制效果进行对比,说明基于线性自抗扰控制器的纵向高度控制的优异性能。   相似文献   
40.
针对带有惯性阻尼环节的典型伺服系统,提出一种能实现大范围快速定点运动的控制方案。控制方案首先利用时间最优控制律进行快速目标追踪,当系统速度下降到一定范围内时平滑切换成线性控制律。采用线性控制区内的闭环极点阻尼系统和自然频率作为设计参数,给出了全参数化的控制律。基于Lyapunov理论分析了控制系统的闭环稳定性。将该控制方案用于一个直流伺服电机的位置-速度环的定点位置控制,并进行了MATLAB数字仿真和基于TMS320F28335 DSC的试验研究。结果表明:所设计的控制系统可以对大范围的给定目标进行快速和准确的跟踪,且对扰动和系统参数差异具有较好的鲁棒性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号