首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   18篇
  国内免费   6篇
航空   31篇
航天技术   89篇
综合类   2篇
航天   12篇
  2023年   2篇
  2022年   2篇
  2021年   11篇
  2020年   5篇
  2019年   10篇
  2018年   10篇
  2017年   4篇
  2016年   2篇
  2015年   6篇
  2014年   13篇
  2013年   16篇
  2012年   9篇
  2011年   9篇
  2010年   5篇
  2009年   9篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  2001年   3篇
  1998年   3篇
  1997年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
排序方式: 共有134条查询结果,搜索用时 15 毫秒
101.
高光谱图像全局异常检测RFS-SVDD算法   总被引:5,自引:0,他引:5  
针对SVDD用于高光谱图像全局异常检测时存在虚警率高的问题,提出RFS-SVDD算 法。RFS-SVDD将空间相邻且光谱相似的像元分为同一区域,根据区域大小将图像在空间上分 成潜在异常区域与背景区域,用背景区域中所有子区域的平均光谱RFS作为SVDD训练样本求 取支持向量。RFS是每个子区域中像元光谱的统计结果且不包含奇异像元,可以避免奇异像 元光谱和图像随机噪声对背景建模的影响。对HYMAP和AVIRIS图像数据的仿真结果表明:RFS -SVDD算法能抑制异常目标像元光谱和图像随机噪声对背景建模的干扰,降低SVDD用于高光 谱图像全局异常检测的虚警率。
  相似文献   
102.
基于BiGRU-SVDD的ADS-B异常数据检测模型   总被引:1,自引:0,他引:1  
罗鹏  王布宏  李腾耀 《航空学报》2020,41(10):323878-323878
广播式自动相关监视(ADS-B)作为新一代空管监视技术,由于采用明文方式广播发送数据,因而存在易遭受网络攻击的安全问题。为了准确检测ADS-B数据攻击行为,在充分考虑时间相关性的基础上,提出了针对ADS-B数据的异常数据检测模型。首先利用双向门控循环单元(BiGRU)神经网络预测ADS-B数据,得到了ADS-B数据预测值。再将预测值和实际值作差,将差值放入支持向量数据描述(SVDD)训练,得到了能检测ADS-B异常数据的超球体分类器。并且,选择了合适的滑动窗口,在保证异常检测准确率的同时,缩短BiGRU神经网络的训练时长。实验结果表明,BiGRU-SVDD模型能检测出随机位置偏移攻击、高度偏差攻击、重放攻击、拒绝服务(DOS)等攻击下的ADS-B异常数据。并且,与其他机器学习和深度学习方法相比,BiGRU-SVDD异常检测模型的准确率更佳,适应性更优。  相似文献   
103.
Monthly median values of hourly total electron content (TEC) is obtained with GPS at a station near northern anomaly crest, Rajkot (geog. 22.29°N, 70.74°E; geomag. 14.21°N, 144.9°E) to study the variability of low latitude ionospheric behavior during low solar activity period (April 2005 to March 2006). The TEC exhibit characteristic features like day-to-day variability, semiannual anomaly and noon bite out. The observed TEC is compared with latest International Reference Ionosphere (IRI) – 2007 model using options of topside electron density, NeQuick, IRI01-corr and IRI-2001 by using both URSI and CCIR coefficients. A good agreement of observed and predicted TEC is found during the daytime with underestimation at other times. The predicted TEC by NeQuick and IRI01-corr is closer to the observed TEC during the daytime whereas during nighttime and morning hours, IRI-2001 shows lesser discrepancy in all seasons by both URSI and CCIR coefficients.  相似文献   
104.
The periodic variation of TEC data at Xiamen station (geographic coordinate: 24.4°N, 118.1°E; geomagnetic coordinate: 13.2°N, 187.4°E) at crest of equatorial anomaly in China from 1997 to 2004 is analyzed. The characteristic of TEC association with solar activity and geomagnetic activity are also analyzed. The method of continuous wavelet, cross wavelet and wavelet coherence transform methods have been used. Analysis results show that long-term variations of TEC at Xiamen station are mainly controlled by the variations of solar activities. Several remarkable components including 128–256 days, 256–512 days and 512–1024 days exist in TEC variations. The TEC data at Xiamen station is in anti-phase with geomagnetic Dst index in semiannual time-scale, but this response only exists during high solar activity. Diurnal variation of TEC is studied for different seasons. Some features like the semiannual anomaly and winter anomaly in TEC have been reported.  相似文献   
105.
In the last two decades an anomalous variation in the asymptotic velocity of spacecraft performing a flyby manoeuvre around Earth has been discovered through careful Doppler tracking and orbital analysis. No viable hypothesis for a conventional explanation of this effect has been proposed and its origin remains unexplained. In this paper we discuss a strong transversal component of the gravitomagnetic field as a possible source of the flyby anomaly. We show that the perturbations induced by such a field could fit the anomalies both in sign and order of magnitude. But, although the secular contributions to the Gravity Probe B experimental results and the Lense–Thirring effect in geodynamics satellites can be made null, the detailed orbital evolution is easily in conflict with such an enhanced gravitomagnetic effect.  相似文献   
106.
The ionospheric total electron content (TEC) in both northern and southern Equatorial anomaly regions are examined by using the Global Positioning System (GPS) based TEC measurements around 73°E Longitude in the Asian sector. The TEC contour charts obtained at SURAT (21.16°N; 72.78°E; 12.9°N Geomagnetic Lat.) and DGAR (7.27°S; 72.37°E; 15.3°S Geomagnetic Lat.) over 73°E longitude during a very low solar activity phase (2009) and a moderate solar activity (2012) phase are used in this study. The results show the existence of hemispheric asymmetry and the effects of solar activity on the EIA crest in occurrence time, location and strength. The results are also compared with the TEC derived by IRI-2016 Model and it is found that the North-South asymmetry at the EIA region is clearly depicted by IRI-2016 with some discrepancies (up to 20% in the northern hemisphere at SURAT and up to 40% in the southern hemisphere at DGAR station for June Solstice and up to 10% both for SURAT and DGAR for December Solstice). This discrepancy in the IRI-2016 model is found larger during the year 2012 than that during the solar minimum year 2009 at both the hemispheres. Further, an asymmetry index, (Ai) is determined to illustrate the North-South asymmetry observed in TEC at EIA crest. The seasonal, annual and solar flux dependence of this index are investigated during both solstices and compared with the TEC derived by IRI.  相似文献   
107.
In the process of exploring pre-earthquake thermal anomalies using satellite infrared data, Blackett et al. (2011) found that the previously reported anomalies before the 2001 Mw 7.7 Gujarat earthquake, in India, were related to positive biases caused by data gaps due to cloud cover and mosaicing of neighboring orbits of MODIS satellite data. They supposed that such effects could also be responsible for other cases. We noted a strip-shaped TIR anomaly on March 17th, 2010, 28?days before the Ms. 7.1 Yushu earthquake (Qin et al., 2011). Here we again investigate multi-year infrared satellite data in different bands to discriminate whether the anomaly is associated with the earthquake, or is only bias caused by the data gaps. From the water vapor images, we find lots of clouds that have TIR anomalies. However, on the cloudiness background, there is an obvious strip-shaped gap matching the tectonic faults almost perfectly. In particular, the animation loops of hourly water vapor images show that the cloud kept moving from west to east, while they never covered the strip-shaped gap. We consider that the cloud with this special spatial pattern should have implied the abnormal signals associated with the seismogenic process. Based on current physical models, the satellite IR anomalies both on TIR and water vapor bands can qualitatively be explained using synthetic mechanisms.  相似文献   
108.
Ionograms recorded at Puer station (PUR, 22.7°N, 101.05°E, Dip Latitude 12.9°N) in the Southwest of China from January 2015 to December 2016 were used to study characteristics of the F2 layer stratification at the northern equatorial ionization anomaly. Ionosonde observations show that the development of the F2 layer stratification is different under different conditions. Both the upward and downward movement of the F2 layer stratification could be observed. The F2 layer stratification could occur both at daytime and nighttime. The new cusp could originate from different positions on ionograms. Moreover, statistical results indicate that the F2 layer stratification occurred later in the winter than in other seasons at daytime, it occurred frequently in the local spring, and most of ionograms with the F2 layer stratification at post-midnight occurred in March and April. Our results also show that the F2 layer stratification has a correlation with solar activity.  相似文献   
109.
Efficacy of SAMI2 model for the Indian low latitude region around 75°E longitudes has been tested for different levels of solar flux. With a slight modification of the plasma drift velocity the SAMI2 model has been successful in reproducing quiet time ionospheric low latitude features like Equatorial Ionization Anomaly. We have also showed the formation of electron hole in the topside equatorial ionosphere in the Indian sector. Simulation results show the formation of electron hole in the altitude range 800–2500?km over the magnetic equator. Indian zone results reveal marked differences with regard to the time of occurrence, seasonal appearances and strength of the electron hole vis-a-vis those reported for the American equatorial region.  相似文献   
110.
The high-precision demands imposed by the ocean altimetry community of the late 1980 resulted in the TOPEX/Poseidon mission. This mission was the first to carry as its main instrument a dual-frequency sea-altimeter on board a satellite. This instrument together with other state-of-the-art technologies involved in the mission, led to sea-height determinations with precision better than 2 cm. As a by-product, the TOPEX/Poseidon mission provided vertical TEC determinations that since they became available, have demonstrated to be a powerful tool for ionospheric studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号