全文获取类型
收费全文 | 181篇 |
免费 | 419篇 |
国内免费 | 96篇 |
专业分类
航空 | 611篇 |
航天技术 | 47篇 |
综合类 | 4篇 |
航天 | 34篇 |
出版年
2023年 | 8篇 |
2022年 | 52篇 |
2021年 | 49篇 |
2020年 | 49篇 |
2019年 | 38篇 |
2018年 | 14篇 |
2017年 | 10篇 |
2016年 | 15篇 |
2015年 | 12篇 |
2014年 | 20篇 |
2013年 | 19篇 |
2012年 | 16篇 |
2011年 | 13篇 |
2010年 | 15篇 |
2009年 | 12篇 |
2008年 | 21篇 |
2007年 | 15篇 |
2006年 | 12篇 |
2005年 | 16篇 |
2004年 | 24篇 |
2003年 | 24篇 |
2002年 | 20篇 |
2001年 | 13篇 |
2000年 | 20篇 |
1999年 | 28篇 |
1998年 | 23篇 |
1997年 | 24篇 |
1996年 | 29篇 |
1995年 | 19篇 |
1994年 | 15篇 |
1993年 | 12篇 |
1992年 | 6篇 |
1991年 | 11篇 |
1990年 | 9篇 |
1989年 | 5篇 |
1988年 | 6篇 |
1987年 | 2篇 |
排序方式: 共有696条查询结果,搜索用时 0 毫秒
191.
Flow field design and process stability in electrochemical machining of diamond holes 总被引:1,自引:1,他引:1
《中国航空学报》2016,(6):1830-1839
The metal grille, commonly composed of an amount of diamond holes, has been grow-ingly used as a key structure on stealth aircraft. Electrochemical machining (ECM) promises to be increasingly applied in aircraft manufacturing on the condition that process stability is guaranteed. In this work, a flow field model was designed to improve the process stability. This model is endowed with a variety of flow channel features, together with vibrating feeding modes. The flow field distribution on the bottom surface of the diamond hole was discussed and evaluated as well. The numerical results show that a short arc flow channel could significantly enhance the uniformity of electrolyte velocity distribution and a vibrating feeding of the cathode enables to reduce both fluctuations of the electrolyte velocity and pressure on the bottom surface of the diamond hole. Consequently, the flow field mutations were eliminated. It is verified from the experimental results that a short arc flow channel, when combined with vibrating feeding, is capable of improving machining localization and process stability markedly. What is more, the side gap on the bottom surface of the diamond hole could also be reduced by the abovementioned approach. 相似文献
192.
对国内能源系统常用的几种工业流量测量仪表实际应用选择及节能问题,简要地进行了原理分析和实际应用分析,供使用者优选流量仪表参考。 相似文献
193.
提出了直接式涡轮质量流量计的概念,应用流体力学的二元边界层理论和二元叶栅理论建立了质量流量传感器的数学模型,并计算了涡轮轴向力的大小。计算表明,涡轮转子所受轴向力的大小与涡轮动量ρQ^2成正比。所提供的结论为研制这一类质量流量计提供了理论依据,也为设计轴向测力传感器提供了数据。 相似文献
194.
Numerical simulation of unsteady flow control over an oscillating NACA0012 airfoil is investigated. Flow actuation of a turbulent flow over the airfoil is provided by low current DC surface glow discharge plasma actuator which is analytically modeled as an ion pressure force produced in the cathode sheath region. The modeled plasma actuator has an induced pressure force of about 2 k Pa under a typical experiment condition and is placed on the airfoil surface at 0% chord length and/or at 10% chord length. The plasma actuator at deep-stall angles(from 5° to 25°) is able to slightly delay a dynamic stall and to weaken a pressure fluctuation in down-stroke motion. As a result, the wake region is reduced. The actuation effect varies with different plasma pulse frequencies, actuator locations and reduced frequencies. A lift coefficient can increase up to 70% by a selective operation of the plasma actuator with various plasma frequencies and locations as the angle of attack changes. Active flow control which is a key advantageous feature of the plasma actuator reveals that a dynamic stall phenomenon can be controlled by the surface plasma actuator with less power consumption if a careful control scheme of the plasma actuator is employed with the optimized plasma pulse frequency and actuator location corresponding to a dynamic change in reduced frequency. 相似文献
195.
196.
A numerical study on flow control of ship airwake during shipboard landing is carried out to address the effect of flow control devices on helicopter rotor airload. The in-house Reynolds Averaged Navier-Stokes (RANS) based solver Rotorcraft AeroDynamics and Aeroacoustics Solver (RADAS), with combination of momentum source approach is employed to conduct the helicopter shipboard landing simulation. The control effects of three aerodynamic modifications of ship superstructure, i.e. ramp, notch and flap, in different Wind-Over-Deck (WOD) conditions are discussed. From the steady simulation results, the effect of spatial variation of ship airwake on rotor airloads is concluded. The aerodynamic modifications reduce the strength of shedding vortex and increase rotor normal force through delaying and relieving flow separation, and therefore are beneficial to alleviate the limitation of control inputs. By contrast, the perturbation of unsteady ship airwake can cause the serious oscillation of rotor forces during shipboard landing. The unsteady simulations show that the turbulence intensity of ship airwake and oscillatory rotor airloading, represented by Root-Mean-Square (RMS) loading, can be remarkably reduced by the ramp and notch modifications, while the flap modification has adverse effect. It means that flow control devices have large potential benefits to alleviate the pilot’s workload and improve the shipboard landing safety, but they should be well designed to avoid the introduction of more vortex, which leads to increase in disturbance of flow field. 相似文献
197.
为进一步探究非定常脉冲抽吸控制高负荷压气机叶栅流动分离的机理,考察非定常脉动抽吸在变攻角下的适应性和可行性,采用非定常数值方法,系统研究了变攻角下,非定常脉动抽吸对流场性能的影响,并将其与传统的定常抽吸进行了比较分析。结果表明,在设计攻角下,保证相同的时均抽吸量,非定常脉动抽吸控制效果明显优于定常抽吸;在时均抽吸量ms=0.4%时,在给定的激励频率范围内,非定常脉动抽吸都展现出更好的性能,在最优频率时,损失减小了9.4%,静压升提高了12.9%,相比于定常抽吸损失减小了4.2%,静压升提高了4.7%。在变攻角下,在给定的激励频率范围内,非定常脉动抽吸控制效果相比于定常抽吸仍具有较大优势;但大攻角下,非定常脉动抽吸和定常抽吸控制效果均有所下降。 相似文献
198.
In order to promote an in-depth understanding of the mechanism of leading-edge flow separation control over an airfoil using a symmetrical Dielectric Barrier Discharge(DBD) plasma actuator excited by a steady-mode excitation, an experimental investigation of an SC(2)-0714 supercritical airfoil with a symmetrical DBD plasma actuator was performed in a closed chamber and a low-speed wind tunnel. The plasma actuator was mounted at the leading edge of the airfoil.Time-resolved Particle Image Velocimetry(PIV) results of the near-wall region in quiescent air suggested that the symmetrical DBD plasma actuator could induce some coherent structures in the separated shear layer, and these structures were linked to a dominant frequency of f0= 39 Hz when the peak-to-peak voltage of the plasma actuator was 9.8 kV. In addition, an analysis of flow structures without and with plasma actuation around the upper side of the airfoil at an angle of attack of18° for a wind speed of 3 m/s(Reynolds number Re = 20000) indicated that the dynamic process of leading-edge flow separation control over an airfoil could be divided into three stages. Initially, this plasma actuator could reinforce the shedding vortices in the separated shear layer. Then, these vortical structures could deflect the separated flow towards the wall by promoting the mixing between the outside flow with a high kinetic energy and the flow near the surface. After that, the plasma actuator induced a series of rolling vortices in the vicinity of the suction side of the airfoil, and these vortical structures could transfer momentum from the leading edge of the airfoil to the separated region, resulting in a reattachment of the separated flow around the airfoil. 相似文献
199.
国外燃烧诊断技术的新进展 总被引:2,自引:0,他引:2
对近十几年来国外燃烧流场参数的非接触式激光光学诊断技术的进展作了简要回顾和评述。 相似文献
200.