首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221篇
  免费   28篇
  国内免费   13篇
航空   122篇
航天技术   101篇
综合类   15篇
航天   24篇
  2024年   1篇
  2023年   5篇
  2022年   1篇
  2021年   6篇
  2020年   9篇
  2019年   8篇
  2018年   12篇
  2017年   8篇
  2016年   9篇
  2015年   4篇
  2014年   16篇
  2013年   13篇
  2012年   15篇
  2011年   24篇
  2010年   18篇
  2009年   19篇
  2008年   13篇
  2007年   11篇
  2006年   10篇
  2005年   9篇
  2004年   8篇
  2003年   11篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1995年   2篇
  1994年   3篇
  1993年   5篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有262条查询结果,搜索用时 15 毫秒
161.
A comprehensive analysis using nearly two decades of ionosonde data is carried out on the seasonal and solar cycle variations of Equatorial Spread F (ESF) irregularities over magnetic equatorial location Trivandrum (8.5°N, 77°E). The corresponding Rayleigh Taylor (RT) instability growth rates (γ) are also estimated. A seasonal pattern of ESF occurrence and the corresponding γ is established for low solar (LSA), medium solar (MSA) and high solar (HSA) activity periods. For LSA, it is seen that the γ maximizes during post sunset time with comparable magnitudes for autumnal equinox (AE), vernal equinox (VE) and winter solstice (WS), while for summer solstice (SS) it maximizes in the post-midnight period. Concurrent responses are seen in the ESF occurrence pattern. For MSA, γ maximizes during post-sunset for VE followed by WS and AE while SS maximises during post-midnight period. The ESF occurrence for MSA is highest for VE (80%), followed by AE (70%), WS (60%) and SS (50%). In case of HSA, maximum γ occurs for VE followed by AE, WS and SS. The concurrent ESF occurrence maximizes for VE and AE (90%), WS and SS at 70%.The solar cycle variation of γ is examined. γ shows a linear variation with F10.7?cm flux. Further, ESF percentage occurrence and duration show an exponential and linear variation respectively with γ. An empirical model on the solar activity dependence of ESF occurrence and sustenance time over Indian longitudes is arrived at using the database spanning two solar cycles for the first time.  相似文献   
162.
To understand global variability and triggering mechanisms of ionospheric nighttime equatorial spread F (ESF), we analyzed measurements from satellite and a ground-based GPS station for the years between 2010 and 2017. In this study we present seasonal-longitudinal as well as monthly variability of ESF occurrence for solar minimum and yearly variations of ESF occurrence for solar maximum and minimum periods. One of the long standing open questions in the study of ESF is what exactly initiates the Rayleigh-Taylor (RT) plasma instability growth. This question is the focus of the present work. Zonal background eastward electric field and E × B upward plasma drift speed patterns are found to be critically important in understanding plasma irregularity formation. In addition to particular patterns observed on these parameters, the background plasma density in the local evening hours just before the onset of ESF occurrence is very important. Stronger plasma densities just before the onset of irregularities resulted in stronger plasma irregularities, while relatively less dense plasma just before the onset of irregularities resulted in relatively lower plasma irregularities. Seasonal variations in ESF activity between March and September equinox seasons with comparable plasma densities can be defined in terms of the rate of change of solar flux F10.7 (dF10.7/day) index. Strongest ESF occurrence and strongest dF10.7/day are measured in the same month out of all other months in 2016 and 2017. Longitudinal variations of ESF activity in our measurements are related to longitudinal variations of plasma densities. We also found that ESF occurrence is better correlated with rate of change of F10.7 index for months in equinox seasons than for months in solstice seasons for the years between 2013 and 2016.  相似文献   
163.
A simple method is described for displaying and auto scaling the basic ionogram parameters foF2 and h’F2 as well as some additional layer parameters from digital ionograms. The technique employed is based on forming frequency and height histograms in each ionogram. This technique has now been applied specifically to ionograms produced by the IPS5D ionosonde developed and operated by the Australian Space Weather Service (SWS). The SWS ionograms are archived in a cleaned format and readily available from the SWS internet site. However, the method is applicable to any ionosonde which produces ionograms in a digital format at a useful signal-to-noise level. The most novel feature of the technique for autoscaling is its simplicity and the avoidance of the mathematical imaging and line fitting techniques often used. The program arose from the necessity to display many days of ionogram output to allow the location of specific types of ionospheric event such as ionospheric storms, travelling ionospheric disturbances and repetitive ionospheric height changes for further investigation and measurement. Examples and applications of the method are given including the removal of sporadic E and spread F.  相似文献   
164.
A 10.7 cm solar radio flux F10.7, geomagnetic planetary equivalent amplitude (Ap index), and period variations were considered in this paper to construct a linear model for daily averaged ionospheric total electron content (TEC). The correlation coefficient of the modeled results and International GNSS Service (IGS) observables was approximately 0.97, which implied that the model could accurately reflect the realistic variation characteristics of the daily averaged TEC. The influences of the different factors on TEC and its characteristics at different latitudes were examined with this model. Results show that solar activity, annual and semiannual cycles are the three most important factors that affect daily averaged TEC. Solar activity is the primary determinant of TEC during periods with high solar activity, whereas periodic factors primarily contribute to TEC during periods with minimum solar activity. The extent of the influences of the different factors on TEC exhibits obvious differences at varying latitudes. The magnitude of the semiannual variation becomes less significant with the increase in latitude. Furthermore, a geomagnetic storm causes an increase in TEC at low latitudes and a decrease at high latitudes.  相似文献   
165.
用XRD,SEM,TEM等分析手段研究了机械合金化诱发过饱和Ag90Ni10固溶体的形成以及添加稀土Sm、合金元素Cu对合金化过程的影响.随后研究了过饱和Ag90Ni10和添加Sm、Cu的合金粉末在加热脱溶过程中晶格常数及晶粒尺寸变化.并对合金粉末压制烧结后的组织、密度、硬度、电阻率等性能进行了分析.结果表明,球磨60...  相似文献   
166.
167.
Statistical and spectral analyses are performed to investigate variations of two ionosphere F2 layer key parameters, the critical frequency (foF2) and the peak height (hmF2), that were measured over Irkutsk (52.5°N, 104.0°E) from December 2006 to January 2008 under solar minimum. The analyses showed that both parameters contain quasi-harmonic oscillations with periods of Tn = 24/n hours (n = 1–7), among which the diurnal (n = 1) and semidiurnal (n = 2) ones are the strongest. Seasonal variations are explored of mean and median values, spectrum, amplitude, and phase of the diurnal and semidiurnal components of foF2 and hmF2.  相似文献   
168.
In this paper, we use the modified GSM TIP model to explore how the thermosphere–ionosphere system in the American longitudinal sector responded to the series of geomagnetic storms on September 9–14, 2005. Comparison of modeling results with experimental data at Millstone Hill, USA (42.6°N, 71.5°W), Ramey, Puerto Rico (18.3°N, 66.8°W) and Jicamarca, Peru (11.9°S, 76.9°W) has shown a good agreement of ionospheric disturbances in the F-region maximum height. We examine in detail the formation mechanisms of these disturbances at different latitudes and describe some of the important physical processes affecting the behavior of the F-region. In addition, we consider the propagation of thermospheric wind surge and the formation of additional layers in the low-latitude ionosphere during geomagnetic storms.  相似文献   
169.
针对半导体激光器对温度稳定性的要求,采用Fuzzy-PID算法,设计了基于TMS320F2812的半导体激光器温度控制系统,并给出了软件流程。在实验室环境下,采用载波频率为50KHZ的PWM控制,系统在2分钟内成功将半导体激光器的工作温度稳定在25.0±0.07℃,且超调量不大于0.5℃。  相似文献   
170.
Nighttime thermospheric meridional winds aligned to the magnetic meridian have been inferred using hF and hpF2 ionosonde data taken from two equatorial stations, Manaus (2.9°S, 60.0°W, dip latitude 6.0°N) and Palmas (10.17°S, 48.2°W, dip latitude 6.2°S), and one low-latitude station, Sao Jose dos Campos (23.21°S, 45.86°W, dip latitude 17.26°S), during geomagnetic quiet days of August and September, 2002. Using an extension of the ionospheric servo model and a simple formulation of the diffusive vertical drift velocity, the magnetic meridional component of the thermospheric neutral winds is inferred, respectively, at the peak (hpF2) and at the base (hF) heights of the F region over Sao Jose dos Campos. An approach has been included in the models to derive the effects of the electrodynamic drift over Sao Jose dos Campos from the time derivative of hpF2 and hF observed at the equatorial stations. The magnetic meridional winds inferred from the two methods, for the months of August and September, are compared with winds calculated using the HWM-90 model and with measurements from Fabry–Perot technique. The results show varying agreements and disagreements. Meridional winds calculated from hpF2 ionospheric data (servo model) may produce errors of about 59 m/s, whereas the method calculated from the F-region base height (hF) ionospheric data gives errors of about 69 m/s during the occurrence of equatorial spread-F.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号