首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   285篇
  免费   10篇
  国内免费   16篇
航空   45篇
航天技术   223篇
综合类   9篇
航天   34篇
  2024年   1篇
  2023年   12篇
  2022年   1篇
  2021年   7篇
  2020年   11篇
  2019年   8篇
  2018年   8篇
  2017年   3篇
  2016年   2篇
  2015年   4篇
  2014年   24篇
  2013年   22篇
  2012年   22篇
  2011年   11篇
  2010年   25篇
  2009年   24篇
  2008年   23篇
  2007年   15篇
  2006年   12篇
  2005年   19篇
  2004年   11篇
  2003年   8篇
  2002年   5篇
  2001年   4篇
  2000年   6篇
  1999年   1篇
  1998年   4篇
  1997年   4篇
  1996年   1篇
  1995年   4篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1990年   2篇
排序方式: 共有311条查询结果,搜索用时 15 毫秒
131.
In this article, we investigate the interconnection and phase asynchrony between the periodicities of geomagnetic activity indices Kp, Ap, aa, and Dst according to the interplanetary magnetic field (IMF) polarities, toward (T) or away (A), during the time interval 1967–2018. For this purpose, the daily data of Kp, Ap, aa, and Dst indices during the considered period have been sorted into two groups (T and A) according to the IMF polarities. The wavelet transform (WT), the cross-wavelet transform (XWT), and the wavelet coherence (WTC) have been applied on the monthly averages of T and A groups for each geomagnetic index. Moreover, the correlation analyses (linear and running correlations) between the annual averages of T and A groups of each geomagnetic index have been investigated. The results of XWT and WTC revealed the existence of a long-term periodicity in the frequency range 8–16 yr for the monthly averages of T and A groups for aa, Kp, and Ap indices existed during the entire period. In contrast, the Dst index revealed this periodicity during the period 1980–2018. In addition, during this frequency band, both T and A groups of each geomagnetic index revealed a highly positive correlation and nearly in-phase relationship behavior. Furthermore, during the frequency band 4–8 yr, the XWT displayed a prominent periodicity that occurred for the monthly averages of T and A groups of each geomagnetic index, revealing a phase change during some time intervals. Periodicity in the range 2–4 yr for the monthly averages of T and A groups of aa, Kp, Ap, and Dst occurred in the intervals; 1967–2009 for aa and Kp, 1967–2007 for Ap, and 1976–1995 for Dst. The annual periodicity is also identified for all considered indices. Both T and A groups of Dst shared a semiannual periodicity (~187 days) during different intervals in the entire period. On the other hand, a periodicity around 0.25-yr (~90 days) appeared only near the times of solar activity maxima in the case of the T and A groups of aa, Kp, and Ap indices.  相似文献   
132.
We have studied the relationship between three different versions of the sunspot number (Group, International and American Sunspot Number) and the number of active days (i.e., the number of days with spots on the solar disk). We have detected an approximately linear relationship for low solar activity conditions. However, this relationship for the International Sunspot Number is very different to the ones obtained with the other versions of the sunspot number. The discordant values correspond to older observations.  相似文献   
133.
We analyzed the dynamics of global electron content (GEC) for the period 1998–2005 and compared the estimated GEC with variations of the 10.7-cm solar radio emission and with and with GEC values obtained with IRI-2001. We found a strong resemblance between the curves’ shapes for the experimental and modeled GEC: strong semiannual variations are discernible in these series and both curves tend to increase the absolute GEC value during the period of maximum of solar activity. However, there are some significant distinctions, such as absence of 27-day fluctuations in the series of GEC computed by the IRI-2001. On the contrary, observational GEC reflects well dynamics of solar activity: 27-day variations of GEC are very similar to the ones of the index F10.7, but GEC undergoes a lagging of about of 30–60 h as compared to value of the F10.7 index. The relative amplitude of 27-day variations decreases from 8% at the rising and falling solar activity to 2% at the period of its maximum.  相似文献   
134.
The continual monitoring of the low Earth orbit (LEO) debris environment using highly sensitive radars is essential for an accurate characterization of these dynamic populations. Debris populations are continually evolving since there are new debris sources, previously unrecognized debris sources, and debris loss mechanisms that are dependent on the dynamic space environment. Such radar data are used to supplement, update, and validate existing orbital debris models. NASA has been utilizing radar observations of the debris environment for over a decade from three complementary radars: the NASA JPL Goldstone radar, the MIT Lincoln Laboratory (MIT/LL) Long Range Imaging Radar (known as the Haystack radar), and the MIT/LL Haystack Auxiliary radar (HAX). All of these systems are highly sensitive radars that operate in a fixed staring mode to statistically sample orbital debris in the LEO environment. Each of these radars is ideally suited to measure debris within a specific size region. The Goldstone radar generally observes objects with sizes from 2 mm to 1 cm. The Haystack radar generally measures from 5 mm to several meters. The HAX radar generally measures from 2 cm to several meters. These overlapping size regions allow a continuous measurement of cumulative debris flux versus diameter from 2 mm to several meters for a given altitude window. This is demonstrated for all three radars by comparing the debris flux versus diameter over 200 km altitude windows for 3 nonconsecutive years from 1998 to 2003. These years correspond to periods before, during, and after the peak of the last solar cycle. Comparing the year to year flux from Haystack for each of these altitude regions indicate statistically significant changes in subsets of the debris populations. Potential causes of these changes are discussed. These analysis results include error bars that represent statistical sampling errors.  相似文献   
135.
Possible reasons for the temporal instability of long-term effects of solar activity (SA) and galactic cosmic ray (GCR) variations on the lower atmosphere circulation were studied. It was shown that the detected earlier ∼60-year oscillations of the amplitude and sign of SA/GCR effects on the troposphere pressure at high and middle latitudes (Veretenenko and Ogurtsov, Adv.Space Res., 2012) are closely related to the state of a cyclonic vortex forming in the polar stratosphere. The intensity of the vortex was found to reveal a roughly 60-year periodicity affecting the evolution of the large-scale atmospheric circulation and the character of SA/GCR effects. An intensification of both Arctic anticyclones and mid-latitudinal cyclones associated with an increase of GCR fluxes at minima of the 11-year solar cycles is observed in the epochs of a strong polar vortex. In the epochs of a weak polar vortex SA/GCR effects on the development of baric systems at middle and high latitudes were found to change the sign. The results obtained provide evidence that the mechanism of solar activity and cosmic ray influences on the lower atmosphere circulation involves changes in the evolution of the stratospheric polar vortex.  相似文献   
136.
Keeping astronauts healthy during long duration spaceflight remains a challenge. Artificial gravity (AG) generated by a short arm human centrifuges (SAHC) is proposed as the next generation of integrated countermeasure devices that will allow human beings to safely spend extended durations in space, although comparatively little is known about any psychological side effects of AG on brain function.  相似文献   
137.
NeQuick ionospheric electron density model, which has been developed to version 2, produces the full electron density profile in the ionosphere. Each part of the profile is modeled using Epstein layer formalism. Simple empirical relations are used to compute the thicknesses of each layer. In order to validate the B2bot parameter in the NeQuick model during high solar activity, we use the data at Hainan, China (109.1°E, 19.5°N; Geomagnetic coordinates: 178.95°E, 8.1°N), measured with DPS-4, and study the diurnal and seasonal variations of B2bot, ΔB2 (B2best − B2NeQuick 2) and the seasonal median values of B2best/B2NeQuick 2 at that region. The results show that, (1) The differences between B2best and B2NeQuick 2 have diurnal and seasonal variations. (2) The diurnal variations of B2NeQuick 2 are smaller than those of B2best. (3) Generally, except for early morning the experimental values are properly reproduced. (4) Generally, during morning the NeQuick model has an underestimation. The magnitude of underestimation varies with LT and season.  相似文献   
138.
We have studied the topside nighttime ionosphere of the low latitude region using data obtained from DMSP F15, ROCSAT-1, KOMPSAT-1, and GUVI on the TIMED satellite for the period of 2000–2004, during which solar activity decreased from its maximum. As these satellites operated at different altitudes, we were able to discriminate altitude dependence of several key ionospheric parameters on the level of solar activity. For example, with intensifying solar activity, electron density was seen to increase more rapidly at higher altitudes than at lower altitudes, implying that the corresponding scale height also increased. The density increased without saturation at all observed altitudes when plotted against solar EUV flux instead of F10.7. The results of the present study, as compared with those of previous studies for lower altitudes, indicate that topside vertical scale height increases with altitude and that, when solar activity increases, topside vertical scale height increases more rapidly at higher altitudes than at lower altitudes. Temperature also increased more rapidly at higher altitudes than at lower altitudes as solar activity increased. In addition, the height of the F2 peak was seen to increase with increasing solar activity, along with the oxygen ion fraction measured above the F2 peak. These results confirm that the topside ionosphere rises and expands with increasing solar activity.  相似文献   
139.
美国的中性浮力模拟器及其应用   总被引:4,自引:2,他引:2  
中性浮力地面模拟试验不仅可以用来训练航天员,对大型空间结构的设计及在轨组装与维修技术研究也具有重要的作用.文章对美国的三台大型中性浮力模拟器的性能、规模和配置及几次典型的大型空间结构的中性浮力模拟试验作了介绍.  相似文献   
140.
阐述了空间太阳X射线成像望远镜(SXT)在近地环境空间天气观测中的作用和意义。介绍了国内外SXT技术的发展和应用情况,分析了仪器的工作原理、主要观测目标和应具备的基本功能以及关键部件。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号