首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221篇
  免费   72篇
  国内免费   61篇
航空   198篇
航天技术   73篇
综合类   18篇
航天   65篇
  2024年   1篇
  2023年   6篇
  2022年   22篇
  2021年   15篇
  2020年   15篇
  2019年   17篇
  2018年   12篇
  2017年   9篇
  2016年   17篇
  2015年   14篇
  2014年   18篇
  2013年   21篇
  2012年   17篇
  2011年   20篇
  2010年   15篇
  2009年   11篇
  2008年   11篇
  2007年   18篇
  2006年   18篇
  2005年   17篇
  2004年   8篇
  2003年   10篇
  2002年   3篇
  2001年   2篇
  2000年   4篇
  1999年   6篇
  1998年   6篇
  1997年   2篇
  1996年   2篇
  1994年   5篇
  1993年   5篇
  1992年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
排序方式: 共有354条查询结果,搜索用时 343 毫秒
341.
In this work, the atomic structure of Ti III is calculated using two methods, the Thomas-Fermi–Dirac-Amaldi (TFDA) method using the AUTOSTRUCTURE (AS) atomic structure code and the pseudo-relativistic Hartree–Fock (HFR) method using the Cowan (CW) atomic structure code. We used the terms and levels generated by the 19 configurations: 3p6 3d2, 3dns (n = 4–7), 3dnp (n = 4–7), 3dnd (n = 4–7), 3d nf (n = 4–7), 3p6 4s2,3p6 4s4p. Our calculated values are compared with available experimental and theoretical results and new theoretical data of our own are obtained.  相似文献   
342.
For the solid rocket with depletion shutdown system, effective energy management is significant to meet terminal constraints by exhausting excess energy. Several traditional energy management algorithms cannot satisfy the altitude constraint and path constraints are not sufficiently considered. The velocity adjustment capability of these algorithms is limited and the uncertainties are not considered. Based on the on-line programming of velocity capability curve, Spline-Line Energy Management(SLE...  相似文献   
343.
In recent earth observing missions, agile satellites enable various imaging modes beyond the traditional along-track strip imaging. However, it requires maneuvering with boundary conditions of considerable angular velocity, i.e., spin-to-spin maneuvering. This paper proposes an attitude command generation method for spin-to-spin maneuvering that can provide feedforward commands for the attitude control loop. A general solution for arbitrary flight time is provided which steers a satellite to the given final attitude and angular velocity at the prescribed time. In addition, an alternative method is proposed that further improves the maneuvering speed, which is applicable to small-angle maneuvering cases. The proposed solutions are both closed-form which are more intuitive and easier to comprehend than numerical solutions. It also has a great advantage in computational efficiency, which could enable its use on-board in real time. Numerical examples demonstrate the performance of the proposed methods in a single maneuvering case as well as in a consecutive maneuvering case integrated with a realistic earth observing scenario.  相似文献   
344.
开发新型动力系统和智能控制策略是解决节能减排的重要技术方向。本文首先对混合动力系统的配置和拓扑结构进行归类与比较,对控制策略中涉及的智能算法进行归纳和总结;其次,对新型动力船舶在动力系统和控制算法使用情况进行阐释;最后,从不同角度对混合动力系统以及能量管理系统的发展趋势进行展望,为绿色船舶混合动力系统开发以及能量管理系统的研发提供了参考依据。  相似文献   
345.
《中国航空学报》2023,36(8):331-350
A new type of guidance strategy, combining linear quadratic and norm-bounded game theory, is proposed for the scenario of an attacker against active defense aircraft in three-player engagement. The problem involves three players, an attacker, a defender and a target. The differential game theory and the solution of Hamiltonian equation are utilized to obtain the combined guidance strategy for each player with arbitrary-order dynamics. The game process is divided into 4 phases, C1-C4, according to the switching time. The linear quadratic differential game guidance scheme is employed to reduce the fuel cost in the game parts of C1 and C3. The norm-bounded game guidance strategy is adopted to satisfy the constraint of control input in the game stages C2 and C4. Furthermore, zero-effort miss distance is introduced to meet the constraints of game space and defender’s killing radius in the guidance strategy, which guarantees that the attacker is able to avoid the interception of the defender and hit the target with lower fuel cost and maximum acceleration. And it is proved that the proposed guidance strategy satisfies the Nash equilibrium condition. Finally, the feasibility and superiority of combined guidance strategy are respectively illustrated by nonlinear numerical simulation and verified by comparing with linear quadratic and norm-bounded differential game guidance strategies.  相似文献   
346.
《中国航空学报》2022,35(9):19-34
Unmanned Aerial Vehicles (UAVs) have received a wide range of attention for military and commercial applications. Enhanced with communication capability, UAVs are considered to play important roles in the Sixth Generation (6G) networks due to their low cost and flexible deployment. 6G is supposed to be an all-coverage network to provide ubiquitous connections for space, air, ground and underwater. UAVs are able to provide air-borne wireless coverage flexibly, serving as aerial base stations for ground users, as relays to connect isolated nodes, or as mobile users in cellular networks. However, the onboard energy of small UAVs is extremely limited. Thus, UAVs can be only deployed to establish wireless links temporarily. Prolonging the lifetime and developing green UAV communication with low power consumption becomes a critical challenge. In this article, a comprehensive survey on green UAV communications for 6G is carried out. Specifically, the typical UAVs and their energy consumption models are introduced. Then, the typical trends of green UAV communications are provided. In addition, the typical applications of UAVs and their green designs are discussed. Finally, several promising techniques and open research issues are also pointed out.  相似文献   
347.
Space robots play a significant role in on-orbit capture, space structure construction, and assembly tasks. Since the robotic arms are attached to a free-floating satellite, the motion of the manipulator in such tasks and the satellite are coupled. Multiple-arm space robots can perform complex cooperative tasks and are superior to single-arm space robots. Current work proposes a reactionless manipulation algorithm for a multi-robotic arm based on the iterative Newton–Euler method for space robots with many task and balance arms. The present work demonstrates two tasks and one balance arm to perform a reactionless handshake maneuver in space. This maneuver is presented in detail for a planar and spatial case. The planar case uses 3 DoF robotic arms, while the spatial case uses 6 DoF robotic arms. In addition, the balance arm has been designed considering the efficient usage of energy satisfying reactionless manipulation concept. The design procedure focuses on minimizing energy used during the motion of the balance arm for a known motion of task arms using a genetic algorithm. Moreover, computational experiments are conducted to validate the use of the genetic algorithm for optimization. The results of proposed reactionless manipulation algorithm have been validated with the results available in the literature for the spatial case that uses a different method. In the future, an energy-efficient balance arm will be designed to handle tumbling objects.  相似文献   
348.
为研究压缩空气储能系统的向心涡轮启动过程内部流动损失特性,本文采用全三维计算流体动力学(CFD)模型对其启动过程过程进行了数值模拟,与实验结果对比表明,虽然该模型在启动初始阶段与转速稳定阶段存在一定误差,但仍能够整体上反映启动过程的效率变化特征。在此基础上,进一步分析了启动过程中动叶通道内损失区及流场变化特征,结果发现,动叶进口攻角是影响内部流场主要因素:在启动初始阶段,叶轮进口攻角较大,动叶载荷集中在叶片前缘,形成明显的通道分离涡与前缘涡;在快速启动段,攻角减小,动叶载荷沿弦长分布更为均匀,通道分离涡及前缘涡逐渐减小并向叶片吸力面迁移。在整个启动阶段,动叶通道内高损失区也随着通道分离涡逐渐迁移且变小,并向相邻叶片吸力面集中。  相似文献   
349.
马悦萌  周荻  邹昕光 《宇航学报》2022,43(4):496-507
基于飞行-推力一体化思想提出了一种针对搭载超燃冲压发动机的吸气式高超声速飞行器速度通道的状态/输入约束自适应鲁棒保性能安全控制方案。首先根据超燃冲压发动机的机理分析与计算流体动力模型数据,建立了安全子系统与性能子系统面向控制的仿射非线性模型。之后基于障碍Lyapunov理论与动态面设计方法设计了一套安全子系统状态约束控制器,从理论上保证了飞行器在跟踪指令的全过程中,发动机相关状态不会触碰安全边界,并结合自适应技术与辅助系统提高了该控制系统的鲁棒性。针对性能子系统设计了一套鲁棒自抗扰控制器,达到“保证安全的前提下不折损性能”的目的。仿真结果表明所设计的控制系统可以在保障安全的同时达到预想的性能,并显著放宽了超燃冲压发动机对飞行器飞行姿态的约束,保证了高超声速飞行器的机动灵活性。  相似文献   
350.
《中国航空学报》2022,35(9):95-105
Internet of Things (IoT) can be conveniently deployed while empowering various applications, where the IoT nodes can form clusters to finish certain missions collectively. As energy-efficient operations are critical to prolong the lifetime of the energy-constrained IoT devices, the Unmanned Aerial Vehicle (UAV) can be dispatched to geographically approach the IoT clusters towards energy-efficient IoT transmissions. This paper intends to maximize the system energy efficiency by considering both the IoT transmission energy and UAV propulsion energy, where the UAV trajectory and IoT communication resources are jointly optimized. By applying large-system analysis and Dinkelbach method, the original fractional optimization is approximated and reformulated in the form of subtraction, and further a block coordinate descent framework is employed to update the UAV trajectory and IoT communication resources iteratively. Extensive simulation results are provided to corroborate the effectiveness of the proposed method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号