首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   177篇
  免费   28篇
  国内免费   31篇
航空   92篇
航天技术   90篇
综合类   21篇
航天   33篇
  2023年   3篇
  2022年   6篇
  2021年   4篇
  2020年   1篇
  2019年   14篇
  2018年   4篇
  2017年   2篇
  2016年   4篇
  2015年   6篇
  2014年   10篇
  2013年   9篇
  2012年   15篇
  2011年   9篇
  2010年   10篇
  2009年   21篇
  2008年   23篇
  2007年   19篇
  2006年   13篇
  2005年   8篇
  2004年   5篇
  2003年   5篇
  2002年   6篇
  2001年   3篇
  2000年   5篇
  1999年   6篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   8篇
  1994年   5篇
  1993年   3篇
  1991年   2篇
  1990年   1篇
  1984年   1篇
排序方式: 共有236条查询结果,搜索用时 15 毫秒
201.
We investigate the acceleration of charged particles in a time-dependent chaotic magnetic field in this work. In earlier works, it has been demonstrated that in an asymmetric wire-loop current systems (WLCSs), the magnetic field is of chaotic in nature. Furthermore, observations also showed that there exist time-varying current loops and current filaments in solar corona. It is therefore natural to conceive that the magnetic field on the solar surface is chaotic and time-dependent. Here, we develop a numerical model to study the acceleration process of charged particles in a time-varying chaotic magnetic field that is generated by an ensemble of 8 WLCSs. We found that the motion of energetic particles in the system is of diffusive in nature and a power law spectrum can quickly develop. The mechanism examined here may serve as an efficient pre-acceleration mechanism that generates the so-called seed particles for diffusive shock acceleration at a coronal mass ejection (CME) driven shock in large solar energetic particle (SEP) events.  相似文献   
202.
对两种61mm厚的7050-T7451铝合金板材进行对比分析,探讨工艺-组织-性能的关系。采用光学显微镜、扫描电镜进行组织观察,并进行室温拉伸、断裂韧性、剥落腐蚀等性能测试,实验表明:两种板材的综合性能均满足AMS 4050H标准的指标要求,但一种板材的强度、断裂韧度略低于另一种相同规格的板材,而剥落腐蚀性能略好。两种产品性能差异的主要原因在于,更系统的工艺控制使板材保持较好的组织均匀性、较小的再结晶比例,仅残留较少的小尺寸且均匀分布的Al7Cu2Fe相,基本无Al2Cu Mg相。  相似文献   
203.
A new process of synthesizing TiNi/Ti2Ni composite particles, high temperature molten salts method, is introduced. This method uses molten salts as a reaction medium that does not take part in the chemical reaction and can be easily dissolved in rinsing water. Ac-cording this method, the composite particles were prepared in molten salts at 700 ℃-900 ℃. By means of differential scanning calo-rimetry (DSC), the reversible martensitic transformation of TiNi particles in these composite particles was confirmed.  相似文献   
204.
We suggest that superbursts from some low mass X-ray binaries may be due to breaking and re-formation of diquark pairs, on the surface of realistic strange stars. Diquarks are expected to break up due to the explosion and shock of the thermonuclear process. After a prolonged accretion when almost all pairs get broken, the subsequent production of copious diquarks may produce sufficient energy to produce the superbursts.  相似文献   
205.
Our current understanding of the acceleration of solar-energetic particles is reviewed. The emphasis in this paper is on analytic theory and numerical modeling of the physics of diffusive shock acceleration. This mechanism naturally produces an energy spectrum that is a power law over a given energy interval that is below a characteristic energy where the spectrum has a break, or a rollover. This power law is a common feature in the observations of all types of solar-energetic particles, and not necessarily just those associated with shock waves (e.g. events associated with impulsive solar flares which are often described in terms of resonant stochastic acceleration). Moreover, the spectral index is observed to have remarkably little variability from one event to the next (about 50%). Any successful acceleration mechanism must be able to produce this feature naturally and have a resulting power-law index that does not depend on physical parameters that are expected to vary considerably. Currently, only diffusive shock acceleration does this.  相似文献   
206.
Reconnection is a major commonality of solar and magnetospheric physics. It was conjectured by Giovanelli in 1946 to explain particle acceleration in solar flares near magnetic neutral points. Since than it has been broadly applied in space physics including magnetospheric physics. In a special way this is due to Harry Petschek, who in 1994 published his ground breaking solution for a 2D magnetized plasma flow in regions containing singularities of vanishing magnetic field. Petschek’s reconnection theory was questioned in endless disputes and arguments, but his work stimulated the further investigation of this phenomenon like no other. However, there are questions left open. We consider two of them – “anomalous” resistivity in collisionless space plasma and the nature of reconnection in three dimensions. The CLUSTER and SOHO missions address these two aspects of reconnection in a complementary way -- the resistivity problem in situ in the magnetosphere and the 3D aspect by remote sensing of the Sun. We demonstrate that the search for answers to both questions leads beyond the applicability of analytical theories and that appropriate numerical approaches are necessary to investigate the essentially nonlinear and nonlocal processes involved. Necessary are both micro-physical, kinetic Vlasov-equation based methods of investigation as well as large scale (MHD) simulations to obtain the geometry and topology of the acting fields and flows.  相似文献   
207.
The ionic charge of solar energetic particles (SEP) as observed in interplanetary space is an important parameter for the diagnostic of the plasma conditions at the source region and provides fundamental information about the acceleration and propagation processes at the Sun and in interplanetary space. In this paper we review the new measurements of ionic charge states with advanced instrumentation onboard the SAMPEX, SOHO, and ACE spacecraft that provide for the first time ionic charge measurements over the wide energy range of ∼0.01 to 70 MeV/nuc (for Fe), and for many individual SEP events. These new measurements show a strong energy dependence of the mean ionic charge of heavy ions, most pronounced for iron, indicating that the previous interpretation of the mean ionic charge being solely related to the ambient plasma temperature was too simplistic. This energy dependence, in combination with models on acceleration, charge stripping, and solar and interplanetary propagation, provides constraints for the temperature, density, and acceleration time scales in the acceleration region. The comparison of the measurements with model calculations shows that for impulsive events with a large increase of Q Fe(E) at energies ≤1 MeV/nuc the acceleration occurs low in the corona, typically at altitudes ≤0.2 R S .  相似文献   
208.
The galactic cosmic rays arriving near Earth, which include both stable and long-lived nuclides from throughout the periodic table, consist of a mix of stellar nucleosynthesis products accelerated by shocks in the interstellar medium (ISM) and fragmentation products made by high-energy collisions during propagation through the ISM. Through the study of the composition and spectra of a variety of elements and isotopes in this diverse sample, models have been developed for the origin, acceleration, and transport of galactic cosmic rays. We present an overview of the current understanding of these topics emphasizing the insights that have been gained through investigations in the charge and energy ranges Z≲30 and E/M≲1 GeV/nuc, and particularly those using data obtained from the Cosmic Ray Isotope Spectrometer on NASA’s Advanced Composition Explorer mission.  相似文献   
209.
The problem of modeling solar energetic particle (SEP) events is important to both space weather research and forecasting, and yet it has seen relatively little progress. Most important SEP events are associated with coronal mass ejections (CMEs) that drive coronal and interplanetary shocks. These shocks can continuously produce accelerated particles from the ambient medium to well beyond 1 AU. This paper describes an effort to model real SEP events using a Center for Integrated Space weather Modeling (CISM) MHD solar wind simulation including a cone model of CMEs to initiate the related shocks. In addition to providing observation-inspired shock geometry and characteristics, this MHD simulation describes the time-dependent observer field line connections to the shock source. As a first approximation, we assume a shock jump-parameterized source strength and spectrum, and that scatter-free transport occurs outside of the shock source, thus emphasizing the role the shock evolution plays in determining the modeled SEP event profile. Three halo CME events on May 12, 1997, November 4, 1997 and December 13, 2006 are used to test the modeling approach. While challenges arise in the identification and characterization of the shocks in the MHD model results, this approach illustrates the importance to SEP event modeling of globally simulating the underlying heliospheric event. The results also suggest the potential utility of such a model for forcasting and for interpretation of separated multipoint measurements such as those expected from the STEREO mission.  相似文献   
210.
In this study, we explored children’s knowledge of gravity at different ages (5–6, 7–8, and 9–10 years), by asking the same question (“Where does a stone go when we drop it?”) in three different contexts (on Earth, in a spaceship orbiting the Earth, and on the Moon). We tested the influence of context and children’s age on both the answers and the justifications they provided. We expected that children of all ages would find it easier to make correct predictions in the Earth context than in the other two contexts. We were also interested in the kinds of justification children construct and how these justifications change during ontogenesis. Seventy-two French children were individually interviewed at their school. None of them had received any direct teaching about gravity. Results showed that children found it easier to predict the fall of the stone on Earth than its behaviour in the other two contexts, but that the younger children predicted the fall of the stone on the Moon more accurately than the older children. This unusual developmental effect only occurred for the Moon context. We also found that the categories of justifications changed with age, with a move away from intuitive considerations towards mechanistic ones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号