排序方式: 共有49条查询结果,搜索用时 15 毫秒
11.
Cecile Gry 《Space Science Reviews》1996,78(1-2):239-246
The distribution, kinematics and physical properties of the interstellar matter surrounding the Sun can be inferred from ground-based and UV spectroscopic observations. On a 200 pc scale the local interstellar matter appears inhomogeneous and asymmetric. Although it generally flows towards the lower density region, it is composed of numerous small components a few parsecs in size with slightly different velocities. On a smaller scale the extent and the nature of the Local Cloud which flows over the Sun are discussed based on HST-GHRS observations of nearby stars. 相似文献
12.
D. J. Lennon 《Space Science Reviews》1993,66(1-4):127-135
We present new estimates of He/H and CNO abundance ratios in the atmospheres of a selection of B2 supergiants which imply that the C/N ratio in the most luminous Ia stars is close to its equilibrium value. The is also some evidence for more moderate CN abundance anomalies in the B2Ib and B2II supergiants. These results, together with other recent work, imply that the effects of the CNO bi-cycle on the composition of B-supergiant atmospheres are most severe for the more luminous and massive stars. Furthermore, studies of LMC B-supergiants indicate that a small fraction of these very luminous stars are nitrogen weak. This picture is qualitatively consistent with theoretical predictions whenever massive stars perform blue loops in the HR diagram, returning from a red supergiant phase to become core helium burning blue supergiants with atmospheres contaminated by nuclear processed material. 相似文献
13.
R. A. Leske R. A. Mewaldt C. M. S. Cohen A. C. Cummings E. C. Stone M. E. Wiedenbeck T. T. von Rosenvinge 《Space Science Reviews》2007,130(1-4):195-205
Solar energetic particles (SEPs) provide a sample of the Sun from which solar composition may be determined. Using high-resolution
measurements from the Solar Isotope Spectrometer (SIS) onboard NASA’s Advanced Composition Explorer (ACE) spacecraft, we have
studied the isotopic composition of SEPs at energies ≥20 MeV/nucleon in large SEP events. We present SEP isotope measurements
of C, O, Ne, Mg, Si, S, Ar, Ca, Fe, and Ni made in 49 large events from late 1997 to the present. The isotopic composition
is highly variable from one SEP event to another due to variations in seed particle composition or due to mass fractionation
that occurs during the acceleration and/or transport of these particles. We show that various isotopic and elemental enhancements
are correlated with each other, discuss the empirical corrections used to account for the compositional variability, and obtain
estimated solar isotopic abundances. We compare the solar values and their uncertainties inferred from SEPs with solar wind
and other solar system abundances and find generally good agreement. 相似文献
14.
John Vallerga 《Space Science Reviews》1996,78(1-2):277-288
Because of the strong absorption of extreme ultraviolet radiation by hydrogen and helium, almost every observation with the Extreme Ultraviolet Explorer (EUVE) satellite is affected by the diffuse clouds of neutral gas in the local interstellar medium (LISM). This paper reviews some of the highlights of the EUVE results on the distribution and physical state of the LISM and the implications of these results with respect to the interface of the LISM and the heliosphere. The distribution of sources found with the EUVE all-sky surveys shows an enhancement in absorption toward the galactic center. Individual spectra toward nearby continuum sources provide evidence of a greater ionization of helium than hydrogen in the Local Cloud with an mean ratio of H I/He I of 14.7. The spectral distribution of the EUV stellar radiation field has been measured, which provides a lower limit to local H II and He II densities, but this radiation field alone cannot explain the local helium ionization. A combination of EUVE measurements of H I, He I, and He II columns plus the measurement of the local He I density with interplanetary probes can place constraints on the local values of the H I density outside the heliosphere to lie between 0.15 and 0.34 cm–3 while the H II density ranges between 0.0 and 0.14 cm–3. The thermal pressure (P/k = nT) of the Local Cloud is derived to be between 1700 and 2300 cm–3 K, a factor of 2 to 3 above previous estimates. 相似文献
15.
The most recent chemical evolution models for D and 3He are reviewed and their results compared with the available data.Models in agreement with the major galactic observational constraints predict deuterium depletion from the Big Bang to the present epoch smaller than a factor of 3 and therefore do not allow for D/H primordial abundances larger than 5 × 10-5. Models predicting higher D consumption do not seem to be able to reproduce other observed features of our galaxy (e.g. SFR, abundances, abundance ratios and/or gradients of heavier elements, metallicity distribution of G-dwarfs).Observational and theoretical 3He abundances can be reconciled with each other if the majority of low mass stars experience in the red giant phase a deep mixing allowing the consumption of most of the 3He produced during core-hydrogen burning. 相似文献
16.
C. Giammanco P. Bochsler R. Karrer F. M. Ipavich J. A. Paquette P. Wurz 《Space Science Reviews》2007,130(1-4):329-333
Solar chemical abundances are determined by comparing solar photospheric spectra with synthetic ones obtained for different
sets of abundances and physical conditions. Although such inferred results are reliable, they are model dependent. Therefore,
one compares them with the values for the local interstellar medium (LISM). The argument is that they must be similar, but
even for LISM abundance determinations models play a fundamental role (i.e., temperature fluctuations, clumpiness, photon
leaks). There are still two possible comparisons—one with the meteoritic values and the second with solar wind abundances.
In this work we derive a first estimation of the solar wind element ratios of sulfur relative to calcium and magnesium, two
neighboring low-FIP elements, using 10 years of CELIAS/MTOF data. We compare the sulfur abundance with the abundance determined
from spectroscopic observations and from solar energetic particles. Sulfur is a moderately volatile element, hence, meteoritic
sulfur may be depleted relative to non-volatile elements, if compared to its original solar system value. 相似文献
17.
The chemical composition of comet nuclei derived from current data on interstellar dust ingredients and comet dust and coma
molecules are shown to be substantially consistent with each other in both refractory and volatile components. When limited
by relative cosmic abundances the water in comet nuclei is constrained to be close to 30% by mass and the refractory to volatile
ratio is close to 1:1. The morphological structure of comet nuclei, as deduced from comet dust infrared continuum and spectral
emission properties, is described by a fluffy (porous) aggregate of tenth micron silicate core-organic refractory mantle particle
on which outer mantles of predominantly H2O ices contain embedded carbonaceous and polycyclic aromatic hydrocarbon (PAH) type particles of size in the of 1 - 10nm range.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
18.
A new mechanism for the FIP fractionation in the solar wind in the form of a stationary diffusion model is proposed. It is based on a weakly stratified chromospheric layer of constant density and temperature, permeated everywhere by ionizing photons and a homogeneous magnetic field. Our model does not invoke any particular geometry or special set up of the system and is founded solely on robust and well understood atomic collisonal physics. Technically, a boundary value problem of four coupled differential equations is solved for each chemical element, i.e. a continuity equation and a momentum equation for both atoms and singly ionized particles. For the main gas (hydrogen), an analytical solution can be found. This then serves as a background for the numerical integration of each trace gas system (several elements from He to Fe). We find that, after a few hydrogen diffusion lengths, each minor species asymptotically approaches a constant density. The ratios of these density values to some reference element reproduce the observed FIP fractionation pattern remarkably well. 相似文献
19.
R. A. Mewaldt C. M. S. Cohen G. M. Mason A. C. Cummings M. I. Desai R. A. Leske J. Raines E. C. Stone M. E. Wiedenbeck T. T. von Rosenvinge T. H. Zurbuchen 《Space Science Reviews》2007,130(1-4):207-219
Although the average composition of solar energetic particles (SEPs) and the bulk solar wind are similar in a number of ways,
there are key differences which imply that solar wind is not the principal seed population for SEPs accelerated by coronal
mass ejection (CME) driven shocks. This paper reviews these composition differences and considers the composition of other
possible seed populations, including coronal material, impulsive flare material, and interplanetary CME material. 相似文献
20.
This review summarises recent studies of O-stars, Luminous Blue Variables (LBVs) and Wolf-Rayet (WR) stars, emphasising observations and analyses of their atmospheres and stellar winds yielding determinations of their physical and chemical properties. Studies of these stellar groups provide important tests of both stellar wind theory and stellar evolution models incorporating mass-loss effects. Quantitative analyses of O-star spectra reveal enhanced helium abundances in Of and many luminous O-supergiants, together with CNO anomalies in OBN and Ofpe/WN9 stars, indicative of evolved objects. Enhanced helium, and CNO-cycle products are observed in several LBVs, implying a highly evolved status, whilst for the WR stars there is strong evidence for the exposition of CNO-cycle products in WN stars, and helium-burning products in WC and WO stars. The observed wind properties and mass-loss rates derived for O-stars show, in general terms, good agreement with predictions from the latest radiation-driven wind models, although some discrepancies are apparent. Several LBVs show similar mass-loss rates at maximum and minimum states, contrary to previous expectations, with the mechanism responsible for the variability and outbursts remaining unclear. WR stars exhibit the most extreme levels of mass-loss and stellar wind momenta. Whilst alternative mass-loss mechanisms have been proposed, recent calculations indicate that radiation pressure alone may be sufficient, given the strong ionization stratification present in their winds. 相似文献