首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   186篇
  免费   10篇
  国内免费   7篇
航空   16篇
航天技术   180篇
综合类   1篇
航天   6篇
  2023年   4篇
  2022年   3篇
  2021年   6篇
  2020年   9篇
  2019年   11篇
  2018年   12篇
  2015年   5篇
  2014年   23篇
  2013年   19篇
  2012年   14篇
  2011年   8篇
  2010年   15篇
  2009年   19篇
  2008年   18篇
  2007年   1篇
  2006年   5篇
  2005年   5篇
  2003年   8篇
  2002年   1篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
排序方式: 共有203条查询结果,搜索用时 15 毫秒
31.
This paper describes the three-dimensional (3-D) electron density mapping of the ionosphere given as output by the assimilative IRI-SIRMUP-P (ISP) model for three different geomagnetic storms. Results of the 3-D model are shown by comparing the electron density profiles given by the model with the ones measured at two testing ionospheric stations: Roquetes (40.8°N, 0.5°E), Spain, and San Vito (40.6°N, 17.8°E), Italy. The reference ionospheric stations from which the autoscaled foF2 and M(3000)F2 data as well as the real-time vertical electron density profiles are assimilated by the ISP model are those of El Arenosillo (37.1°N, 353.3°E), Spain, Rome (41.8°N, 12.5°E), and Gibilmanna (37.9°N, 14.0°E), Italy. Overall, the representation of the ionosphere made by the ISP model is better than the climatological representation made by only the IRI-URSI and the IRI-CCIR models. However, there are few cases for which the assimilation of the autoscaled data from the reference stations causes either a strong underestimation or a strong overestimation of the real conditions of the ionosphere, which is in these cases better represented by only the IRI-URSI model. This ISP misrepresentation is mainly due to the fact that the reference ionospheric stations covering the region mapped by the model turn out to be few, especially for disturbed periods when the ionosphere is very variable both in time and in space and hence a larger number of stations would be required. The inclusion of new additional reference ionospheric stations could surely smooth out this concern.  相似文献   
32.
研究了利用DEMETER卫星电磁场探测数据辨识电力线谐波辐射(PLHR,Power Line Harmonic Radiation)事件的方法,探讨了我国空间中PLHR事件的特点.通过采用时频分析和Welch功率谱估计法分析了2005-2010年6年我国空间中的全部卫星电场强度探测数据,共发现151例PLHR事件,给出了PLHR事件的统计分析和典型实例.结果表明我国空间PLHR事件的频率分布在1 000~4 500 Hz之间,多为50 Hz的奇数倍,间隔为50/100 Hz.PLHR事件与我国电网发展和变化有密切关系,与地磁活动水平无关,呈现出昼夜差异和季节差异.最后给出了影响PLHR事件探测的可能因素.  相似文献   
33.
Ionosonde data from two equatorial stations in the African sector have been used to study the signatures of four strong geomagnetic storms on the height – electron density profiles of the equatorial ionosphere with the objective of investigating the effects and extent of the effects on the three layers of the equatorial ionosphere. The results showed that strong geomagnetic storms produced effects of varying degrees on the three layers of the ionosphere. Effect of strong geomagnetic storms on the lower layers of the equatorial ionosphere can be significant when compared with effect at the F2-layer. Fluctuations in the height of ionization within the E-layer were as much as 0% to +20.7% compared to −12.5% to +8.3% for the F2-layer. The 2007 version of the International Reference Ionosphere, IRI-07 storm-time model reproduced responses at the E-layer but overestimated the observed storm profiles for the F1- and F2-layers.  相似文献   
34.
在对欧空局火星快车探测器搭载的MARSIS雷达的浅表层探测数据进行校准过程中,获得了火星电离层的总电子含量(total electron content,TEC)观测数据。利用该数据,计算火星低纬度地区电离层的峰值电子密度和标高;并对其进行统计分析发现,在低纬度地区,火星冬季电离层的标高和峰值电子密度均较夏季高,即冬季电离层较夏季更显著,且春季电离层的电子密度梯度最大。  相似文献   
35.
磁暴对海南地区电离层扩展F的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
利用2002年2月至2007年12月海南地区DPS-4测高仪观测数据, 用统计分析方法研究了磁暴对电离层扩展F的影响. 结果认为磁暴从整体上抑制了扩展F现象的发生. 但若把扩展F分为不同类型, 则结果却有所不同. 对于频率型(FSF), 在2002年和2003年磁暴对其有促发作用, 在2004---2007年有抑制作用; 对于区域型(RSF), 在2002---2005年磁暴对其有抑制作用, 在2006年和2007年, 对其有弱促发作用; 对于混合型(MSF), 在2002年磁暴对其有抑制作用, 在2003年和2004年有促发作用, 从2005年开始, 磁暴对其有抑制作用; 对于强区域型 (SSF), 在2002---2004年磁暴对其有抑制作用, 在2005年和2006年有促发作用, 2007年有弱抑制作用.   相似文献   
36.
Monthly median values of foF2, hmF2 and M(3000)F2 parameters, with quarter-hourly time interval resolution for the diurnal variation, obtained with DPS4 digisonde at Hainan (19.5°N, 109.1°E; Geomagnetic coordinates: 178.95°E, 8.1°N) are used to investigate the low-latitude ionospheric variations and comparisons with the International Reference Ionosphere (IRI) model predictions. The data used for the present study covers the period from February 2002 to April 2007, which is characterized by a wide range of solar activity, ranging from high solar activity (2002) to low solar activity (2007). The results show that (1) Generally, IRI predictions follow well the diurnal and seasonal variation patterns of the experimental values of foF2, especially in the summer of 2002. However, there are systematic deviation between experimental values and IRI predictions with either CCIR or URSI coefficients. Generally IRI model greatly underestimate the values of foF2 from about noon to sunrise of next day, especially in the afternoon, and slightly overestimate them from sunrise to about noon. It seems that there are bigger deviations between IRI Model predictions and the experimental observations for the moderate solar activity. (2) Generally the IRI-predicted hmF2 values using CCIR M(3000)F2 option shows a poor agreement with the experimental results, but there is a relatively good agreement in summer at low solar activity. The deviation between the IRI-predicted hmF2 using CCIR M(3000)F2 and observed hmF2 is bigger from noon to sunset and around sunrise especially at high solar activity. The occurrence time of hmF2 peak (about 1200 LT) of the IRI model predictions is earlier than that of observations (around 1500 LT). The agreement between the IRI hmF2 obtained with the measured M(3000)F2 and the observed hmF2 is very good except that IRI overestimates slightly hmF2 in the daytime in summer at high solar activity and underestimates it in the nighttime with lower values near sunrise at low solar activity.  相似文献   
37.
We examined some 75 observations from the low-altitude Earth orbiting DMSP, Ørsted and CHAMP satellites which were taken in the region of the nominal cusp. Our objective was to determine whether the actually observed cusp locations as inferred from magnetosheath-like particle precipitation (“particle cusp”) and intense small-scale magnetic field variations (“current cusp”), respectively, were identical and were consistent with the statistically expected latitude of the cusp derived from a huge number of charged particle spectrograms (“statistical cusp”).  相似文献   
38.
Currently, ground-based Global Navigation Satellite System (GNSS) stations of the International GNSS Service (IGS) are distributed unevenly around the world. Most of them are located on the mainland, while only a small part of them are scattered on some islands in the oceans. As a consequence, many unreasonable zero values (in fact negative values) appear in Vertical Total Electron Content (VTEC) of European Space Agency (ESA) and Center for Orbit Determination in Europe (CODE) IONEX products, especially in 2008 and 2009 when the solar activities were rather quiet. To improve this situation, we directly implement non-negative physical constraints of ionosphere for global ionosphere maps (GIM) with spherical harmonic functions. Mathematically, we propose an inequality-constrained least squares method by imposing non-negative inequality constraints in the areas where negative VTEC values may occur to reconstruct GIM models. We then apply the new method to process the IGS data in 2008. The results have shown that the new algorithm efficiently eliminates the unwanted behavior of negative VTEC values, which could otherwise often be seen in the current CODE and ESA GIM products in both middle and high latitude areas of the Southern Hemisphere (45°S∼90°S) and the Northern Hemisphere (50°N∼90°N). About 64% of GPS receivers’ DCBs have been significantly improved. Finally, we compare the GIM results between with and without the inequality constraints, which has clearly shown that the GIM result with inequality constraints is significantly better than that without the inequality constraints. The inequality-constrained GIM result is also highly consistent with the final IGS products in terms of root mean squared (RMS) and mean VTEC.  相似文献   
39.
We present an investigation of the influence of the 27-day solar flux variations, caused by solar rotation, on the ionosphere parameters such as the F2 layer critical frequency (foF2) and the total electron content (TEC). Our observational data were obtained with the Irkutsk Digisonde (DPS-4) located at 52.3 North and 104.3 East during the period from 2003 to 2005. In addition, we use TEC data from the Global Ionosphere Maps (GIM) based on Global Positioning System (GPS) satellites. The solar radiation flux at a wavelength of 10.7 cm (F10.7 index) is used as an index characterizing the solar activity level. A good correlation between observed ionosphere parameters and solar activity variations is found especially in autumn-to-winter season. We estimate the impact of the 27-day solar flux variations on the day-to-day variability and determine the time delay of the ionosphere response.  相似文献   
40.
Kamide  Y.  Kihn  E.A.  Ridley  A.J.  Cliver  E.W.  Kadowaki  Y. 《Space Science Reviews》2003,107(1-2):307-316
We report the recent progress in our joint program of real-time mapping of ionospheric electric fields and currents and field-aligned currents through the Geospace Environment Data Analysis System (GEDAS) at the Solar-Terrestrial Environment Laboratory and similar computer systems in the world. Data from individual ground magnetometers as well as from the solar wind are collected by these systems and are used as input for the KRM and AMIE magnetogram-inversion algorithms, which calculate the two-dimensional distribution of the ionospheric parameters. One of the goals of this program is to specify the solar-terrestrial environment in terms of ionospheric processes, providing the scientific community with more than what geomagnetic activity indices and statistical models provide. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号