首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   26篇
  国内免费   29篇
航空   92篇
航天技术   41篇
综合类   6篇
航天   57篇
  2024年   2篇
  2023年   3篇
  2022年   8篇
  2021年   8篇
  2020年   9篇
  2019年   8篇
  2018年   7篇
  2017年   5篇
  2016年   3篇
  2015年   2篇
  2014年   24篇
  2013年   6篇
  2012年   9篇
  2011年   9篇
  2010年   7篇
  2009年   4篇
  2008年   7篇
  2007年   9篇
  2006年   15篇
  2005年   9篇
  2004年   3篇
  2003年   9篇
  2002年   4篇
  2000年   4篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
排序方式: 共有196条查询结果,搜索用时 15 毫秒
181.
Redundant techniques are widely adopted in vehicle management computer (VMC) to ensure that VMC has high reliability and safety. At the same time, it makes VMC have special characteristics, e.g., failure correlation, event simultaneity, and failure self-recovery. Accordingly, the reliability and safety analysis to redundant VMC system (RVMCS) becomes more difficult. Aimed at the difficulties in RVMCS reliability modeling, this paper adopts generalized stochastic Petri nets to establish the reliability and safety models of RVMCS. Then this paper analyzes RVMCS oper- ating states and potential threats to flight control system. It is verified by simulation that the reli- ability of VMC is not the product of hardware reliability and software reliability, and the interactions between hardware and software faults can reduce the real reliability of VMC obviously. Furthermore, the failure undetected states and false alarming states inevitably exist in RVMCS due to the influences of limited fault monitoring coverage and false alarming probability of fault mon- itoring devices (FMD). RVMCS operating in some failure undetected states will produce fatal threats to the safety of flight control system. RVMCS operating in some false alarming states will reduce utility of RVMCS obviously. The results abstracted in this paper can guide reliable VMC and efficient FMD designs. The methods adopted in this paper can also be used to analyze other intelligent systems' reliability.  相似文献   
182.
《中国航空学报》2021,34(7):257-270
Formation flight of multiple Unmanned Aerial Vehicles (UAVs) is expected to bring significant benefits to a wide range of applications. Accurate and reliable relative position information is a prerequisite to safely maintain a fairly close distance between UAVs and to achieve inner-system collision avoidance. However, Global Navigation Satellite System (GNSS) measurements are vulnerable to erroneous signals in urban canyons, which could potentially lead to catastrophic consequences. Accordingly, on the basis of performing relative positioning with double differenced pseudoranges, this paper develops an integrity monitoring framework to improve navigation integrity (a measure of reliability) in urban environments. On the one hand, this framework includes a fault detection and exclusion scheme to protect against measurement faults. To accommodate urban scenarios, spatial dependence in the faults are taken into consideration by this scheme. On the other hand, relative protection level is rigorously derived to describe the probabilistic error bound of the navigation output. This indicator can be used to evaluate collision risk and to warn collision danger in real time. The proposed algorithms are validated by both simulations and flight experiments. Simulation results quantitatively reveal the sensitivity of navigation performance to receiver configurations and environmental conditions. And experimental results suggest high efficiency and effectiveness of the new integrity monitoring framework.  相似文献   
183.
霍明英  彭福军  赵钧  谢少彪  齐乃明 《宇航学报》2015,36(12):1363-1372
针对电动帆航天器谷神星探测任务轨迹优化问题,提出一种基于高斯伪谱法和遗传算法的混合优化算法。为了验证所提出的混合优化算法有效性,并考察任务起始时间和电动帆特征加速度对探测任务的影响,进行了一定数量的数值仿真。仿真结果表明:电动帆航天器自地球至谷神星的飞行时间随着起始时间的变化呈周期性波动,波动周期基本与地球和谷神星的会合周期一致;电动帆航天器的特征加速度越小,完成过渡所需要的飞行时间越长,且一个具有中等特征加速度的电动帆航天器便能在可接受的时间内完成自地球至谷神星的过渡;所提出的混合优化算法是有效的,能够在无任何初值猜测的情况下完成电动帆航天器飞行轨迹的优化。  相似文献   
184.
《中国航空学报》2021,34(9):11-23
Unmanned Aerial Vehicles (UAVs) enabled Aerial Base Stations (UABSs) have been studied widely in future communications. However, there are a series of challenges such as interference management, trajectory design and resource allocation in the scenarios of multi-UAV networks. Besides, different performances among UABSs increase complexity and bring many challenges. In this paper, the joint downlink transmission power control and trajectory design problem in multi-type UABSs communication network is investigated. In order to satisfy the signal to interference plus noise power ratio of users, each UABS needs to adjust its position and transmission power. Based on the interactions among multiple communication links, a non-cooperative Mean-Field-Type Game (MFTG) is proposed to model the joint optimization problem. Then, a Nash equilibrium solution is solved by two steps: first, the users in the given area are clustered to get the initial deployment of the UABSs; second, the Mean-Field Q (MFQ)-learning algorithm is proposed to solve the discrete MFTG problem. Finally, the effectiveness of the approach is verified through the simulations, which simplifies the solution process and effectively reduces the energy consumption of each UABS.  相似文献   
185.
NASA has created a plan to implement the Flexible Path strategy, which utilizes a heavy lift launch vehicle to deliver crew and cargo to orbit. In this plan, NASA would develop much of the transportation architecture (launch vehicle, crew capsule, and in-space propulsion), leaving the other in-space elements open to commercial and international partnerships. This paper presents a space exploration strategy that reverses that philosophy, where commercial and international launch vehicles provide launch services. Utilizing a propellant depot to aggregate propellant on orbit, smaller launch vehicles are capable of delivering all of the mass necessary for space exploration. This strategy has benefits to the architecture in terms of cost, schedule, and reliability.  相似文献   
186.
在利用车载试验进行GINS工具误差辨识过程中,由于输入加速度很小使得系统存在严重的复共线性。应用传统的最小二乘方法会出现增大最小二乘估计量的方差、参数估计值不稳定、产生弃真错误等问题。本文引入经验Bayes岭估计方法来进行GINS车载试验工具误差辨识工作。仿真结果表明,和传统最小二乘方法相比,经验Bayes岭估计的辨识精度有所提高,并可克服系统存在的复共线性的影响。  相似文献   
187.
高超声速冲压发动机-飞行器计力体系讨论   总被引:5,自引:4,他引:1  
从吸气式高超声速飞行器受力分析出发,讨论如何统计飞行器受力的问题,建议在研究中使用增量法。这种方法将冲压发动机冷、热工况产生的力(力矩)增量视为飞行器运动分析中所需的"发动机推力或拉力",这个力或力矩分别叠加在飞行器冷通气状态的力或力矩上。这样,就与传统的飞行器运动方程中的力建立了一一对应的关系,可最大限度地使用以往建立的数据获取方法、分析软件、实验技术体系,将给后续工作带来极大的便利。另外,使用此方法,实验容易获得高质量的数据,通过大量容易组织的冷态实验也可使数值模拟的准确度大大提高,使未来飞行器的运动分析结果更可信。在这个体系下,内流道的冷工况阻力(轴向力)是高超声速冲压发动机与飞行器一体化需考虑的重要问题,一方面飞行器总体任务设计需限定内流道冷阻范围,另一方面要使发动机在要求的冷阻范围内高效工作,后者是高超声速发动机研究面临的严峻挑战。  相似文献   
188.
Despite more than 52 years of lunar exploration, a wide range of first-order scientific questions remain about the Moon’s formation, temporal evolution, and current surface and interior properties. Addressing many of these questions requires obtaining new in situ analyses or return of lunar surface or shallow subsurface samples, and hence rely on the selection of optimal landing sites. Here, we present an approach to optimize science-rich lunar landing site selection studies based on the integration of remote sensing observations. Currently available remote sensing data, as well as features of interest published in the recent literature, were integrated in a Geographic Information System. This numerical database contains geographic information about all these findings, which can be consulted and used to simultaneously display multiple features and parameters of interest. To illustrate our approach, we identified the optimal landing sites to address the two top priorities (or goals) relative to Concept 3 of the National Research Council of the National Academies (2007), namely to ‘Determine the extent and composition of the primary feldspathic crust, (ur)KREEP layer, and other products of differentiation’ and to ‘Inventory the variety, age, distribution and origin of lunar rock types’. We review site requirements and propose possible landing sites for both these goals. We identified 29 sites that best fulfill both these goals and compare them with the landing sites of planned future lunar lander missions. Finally, we detail two of these science-rich sites (Aristarchus and Theophilus craters) which are particularly accessible through their location on the nearside.  相似文献   
189.
Lunar soil simulant is a geochemical reproduction of lunar regolith, and is needed for lunar science and engineering researches. This paper describes a new lunar soil simulant, CAS-1, prepared by the Chinese Academy of Sciences, to support lunar orbiter, soft-landing mission and sample return missions of China’s Lunar Exploration Program, which is scheduled for 2004–2020. Such simulants should match the samples returned from the Moon, all collected from the lunar regolith rather than outcrops. The average mineral and chemical composition of lunar soil sample returned from the Apollo 14 mission, which landed on the Fra Mauro Formation, is chosen as the model for the CAS-1 simulant. Source material for this simulant was a low-Ti basaltic scoria dated at 1600 years from the late Quaternary volcanic area in the Changbai Mountains of northeast China. The main minerals of this rock are pyroxene, olivine, and minor plagioclase, and about 20–40% modal glass. The scoria was analyzed by XRF and found to be chemically similar to Apollo 14 lunar sample 14163. It was crushed in an impact mill with a resulting median particle size 85.9 μm, similar to Apollo soils. Bulk density, shear resistance, complex permittivity, and reflectance spectra were also similar to Apollo 14 soil. We conclude that CAS-1 is an ideal lunar soil simulant for science and engineering research of future lunar exploration program.  相似文献   
190.
当潜航器(AUV)进行输水隧洞巡检时,多普勒测速仪(DVL)声波会对前视声纳图像产生干扰,针对这一问题提出了一种从AUV上卸载DVL,直接从前视声纳图像中提取栽体速度,而后和惯性测量单元(IMU)进行组合导航的方法.该方法根据前视声纳成像原理,建立起每相邻两帧声纳图像间载体的相对位移与配对特征点的图像坐标之间的联系,针对水底为局部平坦区域的情况,对特征点仰角进行了估算.通过惯导速度约束和随机抽样一致(RANSAC)算法,剔除误差较大的配对点,然后利用提取出的载体速度作为观测量进行卡尔曼滤波.经实际数据测试,惯性导航系统(INS)/前视声纳组合的总体性能和INS/DVL组合非常接近,以输水隧洞内的接缝线作为定位基准,INS/前视声纳组合导航在沿隧洞方向上的最大相对定位误差小于行程的1%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号