首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   1篇
航空   14篇
航天技术   192篇
航天   7篇
  2023年   2篇
  2021年   3篇
  2020年   3篇
  2019年   4篇
  2018年   2篇
  2015年   1篇
  2014年   20篇
  2013年   20篇
  2012年   12篇
  2011年   14篇
  2010年   14篇
  2009年   37篇
  2008年   37篇
  2007年   8篇
  2006年   1篇
  2005年   5篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  1999年   1篇
  1998年   5篇
  1996年   2篇
  1995年   5篇
  1993年   2篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1984年   5篇
排序方式: 共有213条查询结果,搜索用时 20 毫秒
71.
After the major modernization of the data acquisition electronics of the particle detectors operated at Aragats Space Environmental Center (ASEC) calculations of the barometric coefficients of all the monitors were performed in the beginning of the 24th solar activity cycle. The barometric coefficients of particle detectors located at altitudes of 1000 m, 2000 m and 3200 m a.s.l. measuring various secondary cosmic ray fluxes were compared with theoretical expectations and monitors operated on different longitudes and latitudes. The barometric coefficients were also calculated for the several neutron monitors of recently established Eurasian database (NMDB) and SEVAN particle detector networks. The latitude and altitude dependencies of the barometric coefficients were investigated, as well as the dependence of coefficients on energy of the primary particles.  相似文献   
72.
Recently it has been suggested that there exist specific changes in the cosmic ray intensity and some solar and geomagnetic parameters during the days, preceding the hurricane appearances over the North Atlantic Ocean. To understand better these phenomena, data for all hurricanes born not only over the Atlantic but also over the Pacific waters in the last 55 years that hit the Mexican borders were elaborated. As basic hurricane parameters the maximum rotational velocity and the estimated total energy were used. To avoid any interference all hurricanes, overlapping the preceding ones with more than 20 days were not included. Then the behavior of the cosmic ray (CR) intensity, the sunspot (SS) numbers, and the geomagnetic parameters (AP) and (KP) in 35 days prior and 20 days after the cyclone start were investigated. The CR, SS, AP and KP showed much more intensive disturbances in the periods preceding and following the hurricane appearance. For SS this disturbance gradually increase with the hurricane strength. A characteristic peak in the CR intensity appears before the hurricane start. But its place varies between 5 and 20 days before that start. Specific changes were observed in the SS. For major hurricanes they begins sometimes more than 20 days in advance. The AP and the KP show series of bursts, spread over the whole period of 30 preceding days. The obtained results from the performed correlational analysis are enough interesting to motivate a further statistical analysis with more precise techniques: in particular a common periodicity of 30 years found in the number of tropical storms landing into Mexico, the averaged rotational wind velocity and the ACE must be studied in connection with the solar Hale cycle. Using coherence wavelet spectral analysis we present a comparative study between one terrestrial and one cosmophysical phenomena that presumable influence hurricanes development: African dust outbreaks versus cosmic rays for all North Atlantic tropical cyclones. It is shown that the cosmophysical influence cannot be considered as a negligible effect.  相似文献   
73.
In recent years the variability of the cosmic ray flux has become one of the main issues not only for the interpretation of the abundances of cosmogenic isotopes in cosmochronic archives like, e.g., ice cores, but also for its potential impact on the terrestrial climate. It has been re-emphasized that the cosmic ray flux is not only varying due to the solar activity-induced changes of the solar wind but also in response to the changing state of the interstellar medium surrounding the heliosphere. We demonstrate the significance of these external boundary condition changes along the galactic orbit of the Sun for the flux as well as spectra of cosmic rays. Such interstellar–terrestrial relations are a major topic of the International Heliophysical Year 2007.  相似文献   
74.
The evidently low solar activity observed between solar cycles 23 and 24 during the years 2008–2010 led to a substantial increase in the Galactic Cosmic Ray (GCR) intensity in comparison with preceding solar minima. As the GCRs consist of highly-ionizing charged particles having the potential to cause biological damage, they are a subject of concern for manned missions to space. With the enhanced particle fluxes observed between 2008 and 2010, it is reasonable to assume that the radiation exposure from GCR must have also increased to unusually high levels. In this paper, the GCR exposure outside and inside the Earth’s magnetosphere is numerically calculated for time periods starting from 1970 to the end of 2011 in order to investigate the increase in dose levels during the years 2008–2010 in comparison with the last three solar minima. The dose rates were calculated in a water sphere, used as a surrogate for the human body, either unshielded or surrounded by aluminium shielding of 0.3, 10 or 40 g/cm2.  相似文献   
75.
We analyze the cosmic-ray anisotropy observed by a prototype network of muon detectors during geomagnetic storms associated with coronal mass ejections (CMEs). The network currently consists of multidirectional surface muon detectors at Nagoya (Japan) and Hobart (Australia), together with a prototype detector at São Martinho (Brazil) which has been in operation since March, 2001. In this report, we analyze the anisotropy recorded in both the muon detector and neutron monitor (the Spaceship Earth) networks and find significant enhancements of cosmic-ray anisotropy during geomagnetic storms. Following the analysis by Bieber and Evenson [Bieber, J.W., Evenson, P. CME geometry in relation to cosmic ray anisotropy. Geophys. Res. Lett. 25 (1998) 2955–2958] for the neutron monitor data at 10 GeV, we also derive cosmic-ray density gradients from muon data at higher-energy (50 GeV), possibly reflecting the larger-scale geometry of CMEs causing geomagnetic storms. We particularly find in some events the anisotropy enhancement clearly starting prior to the storm onset in both the muon and neutron data. This is the first result of the CME-geometry derived from simultaneous observations of the anisotropy with networks of multidirectional muon detectors and neutron monitors.  相似文献   
76.
The cross correlation of daily values of coronal hole areas at the eastern limb of the Sun constructed from the ground based measurements of the green coronal line and daily mean cosmic ray intensities over long time periods shows asymmetry: at the maximum of their 27 day cycle, cosmic ray intensities are better correlated with coronal hole areas 66 days before than with the current value. This indicates the potential for using coronal emission data as one of the parameters for eventual prediction of the level of cosmic ray flux at neutron monitor energies.  相似文献   
77.
The radial distribution of the high-energy (70 MeV-5 GeV) gamma-ray emissivity in the outer Milky Way is derived. The kinematics of HI are used to construct column-density maps in three galacto-centric distance ranges in the outer Galaxy. These maps are used in combination with COS-B gamma-ray data to determine gamma-ray emissivities in these distance ranges. A steep negative gradient of the emissivity for the 70 MeV-150 MeV energy range is found in the outer Galaxy. The emissivity for the 300 MeV-5 GeV range is found to be approximately constant (within 20%) and equal to the local value out to large (20 kpc) galacto-centric distances. These results imply a hardening of the gamma-ray spectrum with increrasing distance and for R > 16 kpc the spectrum is shown to be consistent with a π°-decay spectrum with the intensity expected from the local measurement of the cosmic-ray nuclei spectrum. The energy-dependent decrease is interpreted as a steep gradient in the cosmic-ray electron density and a near constancy of the nuclear component. The galactic origin of electrons with energies up to several hundreds of MeV is confirmed, while for cosmic-ray nuclei with energies of a few GeV either confinement in a large galactic halo or an extragalactic origin is suggested by the data.  相似文献   
78.
Space weather phenomena can effect many areas of commercial airline operations including avionics, communications and GPS navigation systems. Of particular importance at present is the recently introduced EU legislation requiring the monitoring of aircrew radiation exposure, including any variations at aircraft altitudes due to solar activity. With the introduction of new ultra-long-haul “over-the-pole” routes, “more-electric” aircraft in the future, and the increasing use of satellites in the operation, the need for a better understanding of the space weather impacts on future airline operations becomes all the more compelling. This paper will present the various space weather effects, some provisional results of an ongoing 3-year study to monitor cosmic radiation in aircraft, and conclude by summarising some of the identified key operational issues, which must be addressed, with the help of the science community, if the airlines want to benefit from the availability of space weather services.  相似文献   
79.
After a polar reversal in one hemisphere the Sun has two polar caps of the same sign, leaving it in a kind of monopolar state. It may take months before a polar reversal occurs in the other hemisphere. The situation may have been extreme in the Maunder Minimum where the northern hemisphere most probably did not have polar reversals during several cycles, while the southern hemisphere may have had some. This may affect the interplanetary field and thus the cosmic rays reaching the Earth. Using the relation between the Wolf number and the speed of the global magnetic field regions the yearly mean Wolf number has to exceed 40 in order to have polar reversals, hence per hemisphere we expect that it must exceed 20. This may be used to give a definition of a deep minimum.  相似文献   
80.
Taking advantage of the cutoff computations performed for more than a hundred locations from 1955 to 1995 [every 5 years; Shea, M.A., Smart, D.F. Vertical cutoff rigidities for cosmic ray stations since 1955, in: Proceedings of the ICRC 2001, Hamburg, Copernicus Gesellschaft, vol. 10, pp. 4063–4066, 2001], we carefully checked the relationship between the vertical cutoff rigidity and the McIlwain parameter introduced by Shea et al. [Shea, M.A., Smart, D.F., Gentile, L.C. Estimating cosmic ray vertical cutoff rigidities as a function of the McIlwain L-parameter for different epochs of the geomagnetic field. Phys. Earth Planet. Int., 48, 200–205, 1987]. We derived an updated algorithm that can be used outside the polar and equatorial regions, avoiding time consuming computations. Results for the European area and 1990 epoch suggest that the fast evaluation is accurate within 0.1 GV in 26 out of the 30 considered locations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号