首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   2篇
航空   19篇
航天技术   112篇
  2023年   6篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2015年   1篇
  2014年   4篇
  2013年   11篇
  2012年   5篇
  2011年   6篇
  2010年   6篇
  2009年   13篇
  2008年   11篇
  2007年   11篇
  2006年   3篇
  2005年   10篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1995年   2篇
  1994年   14篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
排序方式: 共有131条查询结果,搜索用时 31 毫秒
81.
Coronal magnetic field and nonthermal electrons are very important parameters for understanding of the global heliophysical processes. A flare on November 1, 2004 is selected for self-consistent calculations of coronal magnetic field parallel and perpendicular to the line-of-sight, and density of nonthermal electrons from Nobeyama observations. Both of the diagnosis methods and results are discussed in this paper.  相似文献   
82.
83.
Particularly intense events occurred on the Sun in a period around minimum of solar activity during cycle 23. We investigated the characteristics of September 2005 and December 2006 events and the properties of the correlated observations of ionospheric absorption, obtained by a 30 MHz riometer installed at Mario Zucchelli Station (MZS-Antarctica), and of geomagnetic activity recorded at Scott Base (Antarctica). Solar events are studied using the characteristics of CMEs measured with SoHO/LASCO coronagraphs and the temporal evolution of solar energetic protons in different energy ranges measured by GOES 11 spacecraft.  相似文献   
84.
A study of the relationship between solar wind low-energy energetic particles using data from the Electron, Proton, and Alpha Monitor (EPAM) onboard the Advanced Compositional Explorer spacecraft (ACE) and geomagnetic activity using data from Canadian magnetic observatories in Canada’s polar cap, auroral zone, and subauroral zone was carried out for a period spanning 1997–2005. Full halo coronal mass ejections (CMEs) were used to gauge the initial particle enhancements and the subsequent geomagnetic activity. It was found that maximum geomagnetic activity is related to maximum particle enhancements in a non-linear fashion. Quadratic fit of the data results in expressions that can be easily used in an operational space weather setting to forecast geomagnetic disturbance quantitatively. A superposed epoch analysis shows increase in particle flux level starts hours before geomagnetic activity attains its peak, affirming the precursory nature of EPAM particles for the impending geomagnetic impact of CME. This can supplement the decision process in formulating geomagnetic warning after the launch of CME from the Sun but before the arrival of shock at Earth. The empirical relationships between solar wind low-energy energetic particles and geomagnetic activity revealed in this statistical study can be easily codified, and thus utilized in operational space weather forecast to appraise the geoeffectiveness of the CME and to provide a quantitative forecast for maximum geomagnetic activity in Canada’s polar cap, auroral zone, and subauroral zone after the occurrence of a CME.  相似文献   
85.
We have investigated the source characteristic and coronal magnetic field structure of six impulsive solar energetic particle (SEP) events selected from Wang et al. [Wang, Y.-M., Pick, M., Mason, G.M. Coronal holes, jets, and the origin of 3He-rich particle events. ApJ 639, 495, 2006] and Pick et al. [Pick, M., Mason, G.M., Wang, Y.-M., Tan, C., Wang, L. Solar source regions for 3He-rich solar energetic particle events identified using imaging radio, optical, and energetic particle observations. ApJ 648, 1247, 2006]. Some results are obtained: first, 2 events are associated with wide (≈100°) CMEs (hereafter wide CME events), another 4 events are associated with narrow (?40°) CMEs (hereafter narrow CME events); second, the coronal magnetic field configuration of narrow CME events appear more simple than that of the wide CME events; third, the photospheric magnetic field evolutions of all these events show new emergence of fluxes, while one case also shows magnetic flux cancellation; fourth, the EUV jets usually occurred very close to the footpoint of the magnetic field loop, while meter type III bursts occurred near or at the top of the loop and higher than EUV jets. Furthermore, the heights of type III bursts are estimated from the result of the coronal magnetic field extrapolations.  相似文献   
86.
A self-consistent time-dependent, two-dimensional MHD model with a realistic energy equation is developed to understand the origin of bright coronal emission accompanying the occurrence of a new bipolar magnetic region. The motivation for this study is the interpretation of anticipated observations to be made by the SOHO mission.Purple Mt. Obser., PRC  相似文献   
87.
Numerical solutions of the time-dependent MHD equations are used to generate ambient coronal streamer structures in a corona characteristic of that near solar minimum. The streamers are then disrupted by slow photospheric shear motion at the base of magnetic field lines within the closed field region, which is currently believed to be responsible for producing at least some CMEs. In contrast to several other simulations of this phenomena, the polytropic index is maintained at a value of 5/3 through the addition of coronal heating. Observations are used as a guide in determining the thermodynamic structure and plasma beta in the ambient corona. For a shear speed of 2.5 km/sec, the streamer configuration evolves slowly for about 65 hours before erupting outward with the formation of a CME. The bright CME leading edge travels outward at a speed of about 240 km/sec, and the sheared field lines follow at a somewhat slower speed. A closed magnetic field region is ejected as the magnetic field lines that were opened by the CME reconnect and reform the streamer.  相似文献   
88.
Summarized below are the discussions of working group 3 on "Coronal hole boundaries and interactions with adjacent regions" which took place at the 7th SOHO workshop in Northeast Harbor, Maine, USA, 28 September to 1 October 1998. A number of recent observational and theoretical results were presented during the discussions to shed light on different aspects of coronal hole boundaries. The working group also included presentations on streamers and coronal holes to emphasis the difference between the plasma properties in these regions, and to serve as guidelines for the definition of the boundaries. Observations, particularly white light observations, show that multiple streamers are present close to the solar limb at all times. At some distance from the sun, typically below 2 R, these streamers merge into a relatively narrow sheet as seen, for example, in LASCO and UVCS images. The presence of multiple current sheets in interplanetary space was also briefly addressed. Coronal hole boundaries were defined as the abrupt transition from the bright appearing plasma sheet to the dark coronal hole regions. Observations in the inner corona seem to indicate a transition of typically 10 to 20 degrees, whereas observations in interplanetary space, carried out from Ulysses, show on one hand an even faster transition of less than 2 degrees which is in agreement with earlier Helios results. On the other hand, these observations also show that the transition happens on different scales, some of which are significantly larger. The slow solar wind is connected to the streamer belt/plasma sheet, even though the discussions were still not conclusive on the point where exactly the slow solar wind originates. Considered the high variability of plasma characteristics in slow wind streams, it seems most likely that several types of coronal regions produce slow solar wind, such as streamer stalks, streamer legs and open field regions between active regions, and maybe even regions just inside of the coronal holes. Observational and theoretical studies presented during the discussions show evidence that each of these regions may indeed contribute to the solar slow wind. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
89.
Emission heights of coronal bright points on Fe XII radiance map   总被引:1,自引:0,他引:1  
The study of coronal bright points (BPs) is important for understanding coronal heating and the origin of the solar wind. Previous studies indicated that coronal BPs have a highly significant tendency to coincide with magnetic neutral lines in the photosphere. Here we further studied the emission heights of the BPs above the photosphere in the bipolar magnetic loops that are apparently associated with them. As BPs are seen in projection against the disk their true emission heights are unknown. The correlation of the BP locations on the Fe XII radiance map from EIT with the magnetic field features (in particular neutral lines) was investigated in detail. The coronal magnetic field was determined by an extrapolation of the photospheric field (derived from 2-D magnetograms obtained from the Kitt Peak observatory) to different altitudes above the disk. It was found that most BPs sit on or near a photospheric neutral line, but that the emission occurs at a height of about 5 Mm. Some BPs, while being seen in projection, still seem to coincide with neutral lines, although their emission takes place at heights of more than 10 Mm. Such coincidences almost disappear for emissions above 20 Mm. We also projected the upper segments of the 3-D magnetic field lines above different heights, respectively, on to the tangent xy plane, where x is in the east–west and y in the south–north direction. The shape of each BP was compared with the respective field-line segment nearby. This comparison suggests that most coronal BPs are actually located on the top of their associated magnetic loops. Finally, we calculated for each selected BP region the correlation coefficient between the Fe XII intensity enhancement and the horizontal component of the extrapolated magnetic field vector at the same xy position in planes of different heights, respectively. We found that for almost all the BP regions we studied the correlation coefficient, with increasing height, increases to a maximal value and then decreases again. The height corresponding to this maximum was defined as the correlation height, which for most bright points was found to range below 20 Mm.  相似文献   
90.
The properties of different solar wind streams depend on the large scale structure of the coronal magnetic field. We present average values and distributions of bulk parameters (density, velocity, temperature, mass flux, momentum, and kinetic and thermal energy, ratio of thermal and magnetic pressure, as well as the helium abundance) as observed on board the Prognoz 7 satellite in different types of the solar wind streams. Maximum mass flux is recorded in the streams emanating from the coronal streamers while maximum thermal and kinetic energy fluxes are observed in the streams from the coronal holes. The momentum fluxes are equal in both types of streams. The maximum ratio of thermal and magnetic pressure is observed in heliospheric current sheet. The helium abundance in streams from coronal holes is higher than in streams from streamers, and its dependences on density and mass flux are different in different types of the streams. Also, the dynamics of -particle velocity and temperature relative to protons in streams from coronal holes and streamers is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号