首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   2篇
航空   19篇
航天技术   112篇
  2023年   6篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2015年   1篇
  2014年   4篇
  2013年   11篇
  2012年   5篇
  2011年   6篇
  2010年   6篇
  2009年   13篇
  2008年   11篇
  2007年   11篇
  2006年   3篇
  2005年   10篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1995年   2篇
  1994年   14篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
排序方式: 共有131条查询结果,搜索用时 15 毫秒
41.
The relation between coronal mass ejections (CMEs) and solar flares are statistically studied. More than 10,000 CME events observed by SOHO/LASCO during the period 1996–2005 have been analyzed. The soft X-ray flux measurements provided by the Geostationary Operational Environmental Satellite (GOES), recorded more than 20,000 flares in the same time period. The data is filtered under certain temporal and spatial conditions to select the CME–flare associated events. The results show that CME–flare associated events are triggered with a lift-off time within the range 0.4–1.0 h. We list a set of 41 CME–flare associated events satisfying the temporal and spatial conditions. The listed events show a good correlation between the CME energy and the X-ray flux of the CME–flare associated events with correlation coefficient of 0.76.  相似文献   
42.
Solar transients and their related interplanetary counterparts have severe effects on the space environments of the Earth. Therefore, the research of solar corona and interplanetary physics has become the focus of study for both solar and space scientists. Considerable progress has been achieved in these aspects by the solar and space physics community of China during 2012–2014, which will be given in this report. The brief report summarizes the research advances of solar corona and interplanetary physics into the following parts: solar wind origin and turbulence, coronal waves and seismology, solar eruptions, solar energetic particle and galactic cosmic ray, magnetic reconnection,Magnetohydrodynamic(MHD) models and their applications, waves and structures in solar wind,propagation of ICMEs/shocks and their arrival time predictions. These research achievements have been achieved by Chinese solar and space scientists independently or via international collaborations.  相似文献   
43.
三维磁流体力学(MHD)数值模拟是用来研究日冕和太阳风最常用的方法之一, 其中将计算得到的日冕电子数密度转化为日冕偏振亮度(Polarization Brightness, PB)是与观测对比的重要方法. 由于待转换电子数据网格密度、PB数据网格密度和计算模型的复杂度, 使得日冕偏振亮度的计算比较耗时, 利用单CPU计算无法达到近实时转换日冕偏振亮度的要求, 从而影响了数值模拟的验证效率. 本文在CPU/GPU环境下, 利用CUDA编程技术, 提出了一个日冕偏振亮度并行计算模型. 实验结果表明, 该模型比CPU上的串行模型计算速度提高了31.86倍, 达到了近实时模拟与观测数据比对的计算要求.   相似文献   
44.
We present and discuss here the observations of a small long duration GOES B-class flare associated with a quiescent filament eruption, a global EUV wave and a CME on 2011 May 11. The event was well observed by the Solar Dynamics Observatory (SDO), GONG Hα, STEREO and Culgoora spectrograph. As the filament erupted, ahead of the filament we observed the propagation of EIT wave fronts, as well as two flare ribbons on both sides of the polarity inversion line (PIL) on the solar surface. The observations show the co-existence of two types of EUV waves, i.e., a fast and a slow one. A type II radio burst with up to the third harmonic component was also associated with this event. The evolution of photospheric magnetic field showed flux emergence and cancellation at the filament site before its eruption.  相似文献   
45.
Different models of coronal streamers are used to calculate the radio brightness temperature at the wavelengths of observation of the Nançays Radioheliograph. Calculation are performed assuming the location of the streamer both on the disk and at the limb. Their comparison with observations show that a satisfactory agreement with a particular model can be found in the shape and in the relative enhacement of the streamer with respect to the quiet Sun, although the absolute values of the computed brightness temperatures are much higher than the observed ones.  相似文献   
46.
This work reports the investigation of two coronal mass ejections (CME) observed in white light, H, EUV and X-ray by various instruments both in space and on ground on February 18, 2003 and January 19, 2005, respectively. The white light coronal images show that the first CME began with the rarefaction of a region above the solar limb and was followed by the formation of its leading edge at the boundary of the rarefying region at altitude of 0.46 R from the solar surface. The rarefaction coincided the slow rising phase of the filament eruption, and the CME leading edge was observed to form as the filament eruption started to accelerate apparently. In the early stage of the second CME, a bright loop was first observed above the solar limb with height of 0.37 R in EUV images. We found that the more gradual CMEs initial process, the larger the timing difference between CMEs and their associated flares. The lower part of the filament brightened in H images as the filament rose to a certain height. These brightenings imply that the filament may be heated by magnetic reconnection below the filament in the early stage of the eruption. We suggest that the possible mechanism which led to the formation of the CME leading edge and cavity is magnetic reconnection which occurred under the filament when it reached a certain height.  相似文献   
47.
It is generally assumed that magnetic fields inside interplanetary magnetic clouds and flux ropes in the solar photosphere are force-free. In order to model such fields, the solution of rot B = B is commonly used where  = const. But comparisons of this solutions with observations show significant difference. To treat this problem,we examine the solutions with .  相似文献   
48.
A statistical study of acceleration and its error of coronal mass ejections (CMEs) observed by the Large Angle Spectrometric Coronagraph (LASCO) is performed. A total of 5594 CMEs events have been analyzed by using a least-square method and using the error in the height measures. We verify that slower CMEs (velocities in the interval from 200 to 500 km s−1) tend to have a positive acceleration (about 1 m s−2) at heights above 5 solar radii, while less than 10% CMEs show an average negative acceleration (about −2.2 m s−2) as they propagate from 5 to 30 solar radii. For most individual CMEs one can not say if they are accelerated or decelerated, only for 8% of all observed CMEs events one can extract the sign of the acceleration in the 5–30 solar radii.  相似文献   
49.
Statistical relationship between major flares and the associated CMEs during rising phases of Solar Cycles 23 and 24 are studied. Totally more than 6000 and 10,000 CMEs were observed by SOHO/LASCO (Solar and Heliospheric Observatory/Large Angle Spectrometric Coronagraph) during 23rd [May 1996–June 2002] and 24th [December 2008–December 2014] solar cycles, respectively. In particular, we studied the relationship between properties of flares and CMEs using the limb events (longitude 70–85°) to avoid projection effects of CMEs and partial occultation of flares that occurred near 90°. After selecting a sample of limb flares, we used certain spatial and temporal constraints to find the flare-CME pairs. Using these constraints, we compiled 129 events in Solar Cycle 23 and 92 events in Solar Cycle 24. We compared the flare-CME relationship in the two solar cycles and no significant differences are found between the two cycles. We only found out that the CME mean width was slightly larger and the CME mean acceleration was slightly higher in cycle 24, and that there was somewhat a better relation between flare flux and CME deceleration in cycle 24 than in cycle 23.  相似文献   
50.
Coronal hole jets are fast ejections of plasma occurring within coronal holes, observed at Extreme-UltraViolet (EUV) and X-ray wavelengths. Recent observations of jets by the STEREO and Hinode missions show that they are transient phenomena which occur at much higher rates than large-scale impulsive phenomena like flares and Coronal Mass Ejections (CMEs). In this paper we describe some typical characteristics of coronal jets observed by the SECCHI instruments of STEREO spacecraft. We show an example of 3D reconstruction of the helical structure for a south pole jet, and present how the angular distribution of the jet position angles changes from the Extreme-UltraViolet-Imager (EUVI) field of view to the CORonagraph1 (COR1) (height ∼2.0 R heliocentric distance) field of view. Then we discuss a preliminary temperature determination for the jet plasma by using the filter ratio method at 171 and 195 Å and applying a technique for subtracting the EUV background radiation. The results show that jets are characterized by electron temperatures ranging between 0.8 and 1.3 MK. We present the thermal structure of the jet as temperature maps and we describe its thermal evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号