首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   39篇
  国内免费   16篇
航空   81篇
航天技术   148篇
综合类   15篇
航天   53篇
  2024年   1篇
  2023年   11篇
  2022年   9篇
  2021年   11篇
  2020年   13篇
  2019年   9篇
  2018年   11篇
  2017年   7篇
  2016年   6篇
  2015年   8篇
  2014年   22篇
  2013年   9篇
  2012年   12篇
  2011年   19篇
  2010年   16篇
  2009年   17篇
  2008年   17篇
  2007年   15篇
  2006年   17篇
  2005年   8篇
  2004年   6篇
  2003年   5篇
  2002年   8篇
  2001年   5篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   6篇
  1996年   6篇
  1995年   5篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1988年   1篇
排序方式: 共有297条查询结果,搜索用时 31 毫秒
51.
A mixed crop consisting of cowpeas, pinto beans and Apogee ultra-dwarf wheat was grown in the Laboratory Biosphere, a 40 m3 closed life system equipped with 12,000 W of high pressure sodium lamps over planting beds with 5.37 m2 of soil. Similar to earlier reported experiments, the concentration of carbon dioxide initially increased to 7860 ppm at 10 days after planting due to soil respiration plus CO2 contributed from researchers breathing while in the chamber for brief periods before plant growth became substantial. Carbon dioxide concentrations then fell rapidly as plant growth increased up to 29 days after planting and subsequently was maintained mostly in the range of about 200–3000 ppm (with a few excursions) by CO2 injections to feed plant growth. Numerous analyses of rate of change of CO2 concentration at many different concentrations and at many different days after planting reveal a strong dependence of fixation rates on CO2 concentration. In the middle period of growth (days 31–61), fixation rates doubled for CO2 at 450 ppm compared to 270 ppm, doubled again at 1000 ppm and increased a further 50% at 2000 ppm. High productivity from these crops and the increase of fixation rates with elevated CO2 concentration supports the concept that enhanced CO2 can be a useful strategy for remote life support systems. The data suggests avenues of investigation to understand the response of plant communities to increasing CO2 concentrations in the Earth’s atmosphere. Carbon balance accounting and evapotranspiration rates are included.  相似文献   
52.
Conduction and displacement currents, and their sum the Maxwell current, generated over a thunderstorm (TS) with recurrent lightning discharges are investigated theoretically. The aim is to study better the influence of different factors on these currents, which form the link between thunderstorms and the ionosphere in the global atmospheric electrical circuit. The factors studied concern the thunderstorm characteristics (the charge separation current, and the lightning discharge parameters), as well as the atmospheric and cloud conductivity. Some of these factors may show long-term changes with the 11-year solar cycle, possibly realized through an inverse dependence of the cosmic ray flux on solar activity. Earlier investigations have suggested that the lightning-related charge redistribution and subsequent relaxation, rather than the high intensity current, is mainly the source of the energy coupled to the ionosphere. With respect to this, a quasi-electrostatic analytical model is proposed, based on Maxwell’s equations. The currents are generated by a TS modeled as a positive vertical dipole with charges which are first accumulated and then destroyed by lightning. Our computations show that the mean and peak values of the conduction and total Maxwell currents to the ionosphere depend significantly on the charge moment change. The mean currents are also sensitive to the reduction of the conductivity in thunderclouds. Small variations of the stratospheric conductivity (20% at geomagnetic latitude 40° and 40–50% at 55°) with the solar activity do not influence the currents to the ionosphere very much.  相似文献   
53.
Lower-mesospheric inversion layers (MILs) were studied using the temperature profiles observed by TIMED/SABER over Cariri (7.5°S, 36.5°W), Brazil, in 2005. A total 175 MILs were identified with the maximum occurrence in April and October and the minimum in January and July. The lower MIL is located in a height region from 70 to 90 km, with the peak at around 83 ± 4 km with the temperature of 205 ± 5 K, and the thickness of 4–10 km. The results show large amplitudes of MILs during equinoxes and minimum in solstices, with a clear semiannual variation. A general feature of lower MIL in monthly mean profile was observed twice a year, one from February to May, and the other from August to October with a downward shift of the top level. These results suggest that formation and long persistence of MIL is an important factor to investigate propagation of atmospheric gravity waves in the mesosphere-lower thermosphere (MLT) region.  相似文献   
54.
For objects in the low Earth orbit region, uncertainty in atmospheric density estimation is an important source of orbit prediction error, which is critical for space traffic management activities such as the satellite conjunction analysis. This paper investigates the evolution of orbit error distribution in the presence of atmospheric density uncertainties, which are modeled using probabilistic machine learning techniques. The recently proposed “HASDM-ML,” “CHAMP-ML,” and “MSIS-UQ” machine learning models for density estimation (Licata and Mehta, 2022b; Licata et al., 2022b) are used in this work. The investigation is convoluted because of the spatial and temporal correlation of the atmospheric density values. We develop several Monte Carlo methods, each capturing a different spatiotemporal density correlation, to study the effects of density uncertainty on orbit uncertainty propagation. However, Monte Carlo analysis is computationally expensive, so a faster method based on the Kalman filtering technique for orbit uncertainty propagation is also explored. It is difficult to translate the uncertainty in atmospheric density to the uncertainty in orbital states under a standard extended Kalman filter or unscented Kalman filter framework. This work uses the so-called “consider covariance sigma point (CCSP)” filter that can account for the density uncertainties during orbit propagation. As a test-bed for validation purposes, a comparison between CCSP and Monte Carlo methods of orbit uncertainty propagation is carried out. Finally, using the HASDM-ML, CHAMP-ML, and MSIS-UQ density models, we propose an ensemble approach for orbit uncertainty quantification for four different space weather conditions.  相似文献   
55.
文键  李超龙  王悠悠  赵欣  王斯民  厉彦忠 《宇航学报》2021,42(10):1335-1342
针对传统气动弹射介质空气做功能力不足的问题,提出采用CO_2作为新型气动弹射介质。基于质量守恒和能量守恒定律建立了以CO_2为弹射介质的弹射热力模型,并使用该模型对比分析了CO_2和空气作为弹射介质对于弹射性能的影响。得到了弹射过程中高低压室内介质状态以及飞行器运动参数的动态变化过程。与空气相比,CO_2具有更大的做功能力。相同的热力状态下弹射相同质量的飞行器,使用CO_2可获得更大的出筒速度。CO_2作为弹射工质对于大质量的飞行器优势明显,在不减小出筒速度的情况下,使用CO_2可使负载质量提升50%以上,验证了CO_2作为弹射工质的可行性。  相似文献   
56.
研究了空天机复合循环推进技术中的一个新概念——以液化空气循环为基础的SERJ组合发动机性能。计算了空气液化后分离为液氧和液氮后组合发动机在不同高度、不同飞行马赫数下的性能曲线,并考虑了液化空气量对组合发动机性能的影响。对计算结果的分析表明,液化空气循环虽然使组合发动机推力下降,但能使比冲有较大幅度的上升;液化空气量过大与过小均不利于进一步提高比冲性能,而是存在一个最佳值。  相似文献   
57.
王泽  邢玉明  刘鑫  赵亮 《航空动力学报》2016,31(12):2904-2912
基于FLUENT软件离散相模型及气体助力雾化模型,采用欧拉-拉格朗日方法研究通过Y型喷嘴雾化液氮的雾化特性.由于液氮液滴的蒸发相变,与水相比喷雾锥角更清晰且明显减小,约为10°,喷雾距离缩短.分析喷嘴气液工作压力对液氮雾化索太尔平均直径(SMD)、液滴体积分数和数量分数的影响.结果表明:SMD沿喷射方向变化幅度极小;SMD主要受气相速度及气液比影响,气压低时气相速度影响较大,气压高时气液比影响较大;由于相变作用,液氮雾化粒径分布更为集中.数值研究Y型喷嘴用于不同流量需求的气氮调温器的调温效果,出口温度低于98K,进出口温差达到12K,且整个出口温差在±1K以内,能够实现精确控温要求.  相似文献   
58.
"神州三号"(SZ-3)大气成分探测器搭载在SZ-3留轨舱上于2002年3月26日发射入轨,正遇2002年4月发生的连续两次地磁扰动事件,SZ-3大气成分探测器测得了轨道舱运行高度上(330-350 km附近)大气成分的响应变化和异常现象.探测数据表明,在地磁扰动期间,不仅发生了大气中主要成分O和N2的数密度值增变的响应变化,而且在进入地磁扰动峰期开始后6h左右在较高纬度处出现了N2的异常增变和O的异常降变.4-5h后,这种异常增变峰和降变谷由纬度42°N左右逐渐推移向纬度较低地区,直至消失.  相似文献   
59.
周韬  郭奇峰  周慧钟 《宇航学报》2001,22(4):100-104
研究了巡航导弹低空地形跟踪飞行的撞地概率问题,针对地形随机输入和低空风随机干扰共同作用的情况,研究了撞地概率的仿真计算方法,在给定条件下求出了它们与撞地概率的关系曲线,分析了它们对撞地概率的影响,从中可以看出,协调参数,能有效降低撞地概率,提高巡航导弹的作战效能。  相似文献   
60.
The metabolic consequence of suboptimal (400 μmol mol−1 or ppm), near-optimal (1500 ppm) and supra-optimal (10,000 ppm) atmospheric carbon dioxide concentrations [CO2] was investigated in an attempt to reveal plausible underlying mechanisms for the differential physiological and developmental responses to increasing [CO2]. Both non-targeted and targeted metabolite profiling by GC–MS and LC–MS were employed to examine primary and secondary metabolites in wheat (Triticum aestivum, cv Yocoro rojo) continuously exposed to these [CO2] levels for 14, 21 and 28 days. Metabolite profile was altered by both [CO2] and physiological age. In general, plants grown under high [CO2] exhibited a metabolite profile characteristic of older plants under ambient CO2. Elevated [CO2] resulted in higher levels of phosphorylated sugar intermediates, though no clear trend in the content of reducing sugars was observed. Transient starch content was enhanced by increasing [CO2] to a much greater extent at 10,000 ppm CO2 than at 1500 ppm CO2. The percentage increase of starch content resulting from CO2 enrichment declined as plants develope. In contrast, elevated [CO2] promoted the accumulation of secondary metabolites (flavonoids) progressively to a greater extent as plants became mature. Elevated [CO2] to 1500 ppm induced a higher initial growth rate, while super-elevated [CO2] appeared to negate such initial growth promotion. However, after 4 weeks, there was no difference in vegetative growth between 1500 and 10,000 ppm CO2-grown plants, both elevated CO2 levels resulted in an overall 25% increase in biomass over the control plants. More interestingly, elevated atmospheric [CO2] reduced evapotranspiration rate (ET), but further increase to the supra-optimal level resulted in increased ET (a reversed trend), i.e. ET at 1500 ppm < ET at 10,000 ppm < ET at 400 ppm. The differential effect of elevated and super-elevated CO2 on plants was further reflected in the nitrogen dynamics. These results provide the potential metabolic basis for the differential productivity and stomatal function of plants grown under elevated and super-elevated CO2 levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号