首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   83篇
  国内免费   16篇
航空   93篇
航天技术   180篇
综合类   18篇
航天   57篇
  2025年   3篇
  2024年   10篇
  2023年   15篇
  2022年   16篇
  2021年   16篇
  2020年   16篇
  2019年   14篇
  2018年   14篇
  2017年   12篇
  2016年   8篇
  2015年   9篇
  2014年   23篇
  2013年   10篇
  2012年   13篇
  2011年   19篇
  2010年   16篇
  2009年   17篇
  2008年   17篇
  2007年   15篇
  2006年   17篇
  2005年   8篇
  2004年   6篇
  2003年   5篇
  2002年   8篇
  2001年   5篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   6篇
  1996年   6篇
  1995年   6篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1988年   1篇
排序方式: 共有348条查询结果,搜索用时 15 毫秒
291.
高层大气模型对空间站轨道漂移和寿命的影响分析   总被引:2,自引:0,他引:2  
本文以轨道摄动分析方法一阶理论为基础,其中大气阻力摄动采用数值积分方法,给出一种可利用各种大气模型进行轨道摄动分析的计算方法,并利用三种高层大气模型(CIRA—72,CIRA—86和DTM)和三个太阳活动水平(F10.7=100,150和200)分析比较了大气阻力振动对高度为400km的空间站轨道漂移和寿命的影响,以及估算修正轨道漂移所需的能量。给出的定量分析结果将为空间站或航天飞行器的轨道设计和能量估算提供依据。  相似文献   
292.
研究了甲醇-乙酸乙酯气喷气炉内直接制备气氛的碳势控制问题,建立了温度T、甲烷含量、二氧化碳含量为参数的三因素碳势计算模型。该模型直实地反映了该炉气的碳变变化情况。经过几百次的试验表明,实测碳势值与模型计算值最大偏差为0.053%。  相似文献   
293.
某零组件渗氮时,其渗氮层易出现裂纹及剥落的问题。经研究发现,1Cr11Ni23Ti3MoB材料渗氮时,由于渗氮温度、氨分解率过低,导致零件表面氮势过高,极易在渗层内产生大量微裂纹,并会导致渗层表面出现剥落的现象。通过控制渗氮温度、渗氮时间、氨分解率,有效的解决该类质量问题。  相似文献   
294.
The influence of high energy particles, specifically cosmic rays, on atmospheric physics and chemistry is highly discussed. In most of the proposed models the role of ionization in the atmosphere due to cosmic rays is not negligible. Moreover, effect(s) on minor constituents and aerosols are recently observed, specifically over the polar regions during strong solar particle events. According to the recent findings for such effects it is necessary an essential increase of ion production, specifically during the winter period. The galactic cosmic rays are the main source of ionization in the Earth’s stratosphere and troposphere. Occasionally, the atmospheric ionization is significantly enhanced during strong solar energetic particles events, specifically over the polar caps. During the solar cycle 23 several strong ground level enhancements were observed. One of the strongest was the Bastille day event occurred on 14 July 2000. Using a full Monte Carlo 3-D model, we compute the atmospheric ionization, considering explicitly the contribution of cosmic rays with galactic and solar origin, focusing on high energy particles. The model is based on atmospheric cascade simulation with the PLANETOCOSMICS code. The ion production rate is computed as a function of the altitude above the sea level. The ion production rate is computed on a step ranging from 10 to 30?min throughout the event, considering explicitly the spectral and angular characteristics of the high energy part of solar protons as well as their time evolution. The corresponding event averaged ionization effect relative to the average due to galactic cosmic rays is computed in lower stratosphere and upper troposphere at various altitudes, namely 20?km, 15?km, 12?km and 8?km above the sea level in a sub-polar and polar regions. The 24h and the weekly ionization effects are also computed in the troposphere and low stratosphere. Several applications are discussed.  相似文献   
295.
研发了一种新型全自动高空探测系统,其利用GPS定位,宽波瓣天线捕捉和低噪声接收的方法替代雷达或无线电经纬仪对高空探测仪进行跟踪定位和获取信息,具有不受低仰角的限制,目标不易丢失,性能价格比高等特点,成功将GPS应用于1680 MHz遥测数据传输体制.利用该系统进行了空中大气电场的探测实验,获得了满意的探测结果.由于系统轻便、操作简单、成本较低以及良好的机动性和可靠性,在近地空间环境探测和高空大气科学探测试验及常规的气象探测中有广阔的应用前景.  相似文献   
296.
During the last two decades, accelerometers on board of the CHAMP, GRACE, GOCE and Swarm satellites have provided high-resolution thermosphere density data to improve our knowledge on atmospheric dynamics and coupling processes in the thermosphere-ionosphere region. Most users of the data have focused on relative density variations. Scale differences between datasets and models have been largely neglected or removed using ad hoc scale factors. The origin of these scale differences arises from errors in the aerodynamic modelling, specifically in the modelling of the satellite outer surface geometry and of the gas-surface interactions. Therefore, the first step to remove the scale differences is to enhance the geometry modelling. This work forms the foundation for the future improvement of characterization of satellite aerodynamics and gas-surface interactions models at TU Delft, as well as for extending the use of sideways and angular accelerations in the aerodynamic analysis of accelerations and derivation of thermosphere datasets. Although work to improve geometry and aerodynamic force models by other authors has focused on CHAMP and GRACE, this paper includes the GOCE and Swarm satellites as well. In addition, it uses a density determination algorithm that is valid for arbitrary attitude orientations, enabling a validation making use of attitude manoeuvres. The results show an improvement in the consistency of density data between these four missions, and of data obtained before, during and after attitude manoeuvres of CHAMP and Swarm. The new models result in larger densities, compared to the previously used panel method. The largest average rescaling of density, by switching to the new geometry models is reached for Swarm at 32%, the smallest for GRACE at 5%. For CHAMP and GOCE, mean differences of 11% and 9% are obtained respectively. In this paper, an overview of the improvements and comparisons of data sets is provided together with an introduction to the next research phase on the gas-surface interactions.  相似文献   
297.
    
A key requirement for accurate trajectory prediction and space situational awareness is knowledge of how non-conservative forces affect space object motion. These forces vary temporally and spatially, and are driven by the underlying behavior of space weather particularly in Low Earth Orbit (LEO). Existing trajectory prediction algorithms adjust space weather models based on calibration satellite observations. However, lack of sufficient data and mismodeling of non-conservative forces cause inaccuracies in space object motion prediction, especially for uncontrolled debris objects. The uncontrolled nature of debris objects makes them particularly sensitive to the variations in space weather. Our research takes advantage of this behavior by utilizing observations of debris objects to infer the space environment parameters influencing their motion.The hypothesis of this research is that it is possible to utilize debris objects as passive, indirect sensors of the space environment. We focus on estimating atmospheric density and its spatial variability to allow for more precise prediction of LEO object motion. The estimated density is parameterized as a grid of values, distributed by latitude and local sidereal time over a spherical shell encompassing Earth at a fixed altitude of 400 km. The position and velocity of each debris object are also estimated. A Partially Orthogonal Ensemble Kalman Filter (POEnKF) is used for assimilation of space object measurements to estimate density.For performance comparison, the scenario characteristics (number of objects, measurement cadence, etc.) are based on a sensor tasking campaign executed for the High Accuracy Satellite Drag Model project. The POEnKF analysis details spatial comparisons between the true and estimated density fields, and quantifies the improved accuracy in debris object motion predictions due to more accurate drag force models from density estimates. It is shown that there is an advantage to utilizing multiple debris objects instead of just one object. Although the work presented here explores the POEnKF performance when using information from only 16 debris objects, the research vision is to utilize information from all routinely observed debris objects. Overall, the filter demonstrates the ability to estimate density to within a threshold of accuracy dependent on measurement/sensor error. In the case of a geomagnetic storm, the filter is able to track the storm and provide more accurate density estimates than would be achieved using a simple exponential atmospheric density model or MSIS Atmospheric Model (when calm conditions are assumed).  相似文献   
298.
Atmospheric radiation is one of the major factors that dominate the thermal behaviors of aerostats. A high-performance model is needed to evaluate the atmospheric radiation. Based on the atmospheric radiation database containing 24,862 data points compiled from 7 stations with the elevation from sea level to 2373 m and the reference code MODTRAN, a new atmospheric radiation model is proposed using regression and optimization software. It has excellent prediction accuracy with the coefficient of determination of 0.94, the root mean square error of 15.1 W/m2, and the mean absolute percentage error of 4.13% for the database. Comparison with the well-known existing model shows that the new model has the highest prediction accuracy. The new model predictions agree with the MODTRAN calculations at various altitudes very well, and thus it can be used for estimating the thermal performances of a high altitude aerostat.  相似文献   
299.
    
One of the most attractive scientific issues in the use of GNSS (Global Navigation Satellite System) signals, from a meteorological point of view, is the retrieval of high resolution tropospheric water vapour maps. The real-time (or quasi real-time) knowledge of such distributions could be very useful for several applications, from operative meteorology to atmospheric modelling. Moreover, the exploitation of wet refractivity field reconstruction techniques can be used for atmospheric delay compensation purposes and, as a very promising activity, it could be applied for example to calibrate SAR or Interferometric-SAR (In-SAR) observations for land remote sensing. This is in fact one of the objectives of the European Space Agency project METAWAVE (Mitigation of Electromagnetic Transmission errors induced by Atmospheric Water vapour Effects), in which several techniques are investigated and results were compared to identify a strategy to remove the contribution of water vapour induced propagation delays in In-SAR products. Within this project, the tomographic reconstruction of three dimensional wet refractivity fields from tropospheric delays observed by a local GNSS network (9 dual frequency GPS receivers) deployed over Como area (Italy), during 12–18 October, 2008, was performed. Despite limitations due to the network design, internal consistency tests prove the efficiency of the adopted tomographic approach: the rms of the difference between reconstructed and GNSS observed Zenith Wet Delays (ZWD) are in the order of 4 mm. A good agreement is also observed between our ZWDs and corresponding delays obtained by vertically integrating independent wet refractivity fields, taken by co-located meteorological analysis. Finally, during the observing period, reconstructed vertical wet refractivity profiles evolution reveals water vapour variations induced by simple cloud covering. Even if our main goal was to demonstrate the effectiveness in adopting tomographic reconstruction procedures for the evaluation of propagation delays inside water vapour fields, the actual water vapour vertical variability and its evolution with time is well reproduced, demonstrating also the effectiveness of the inferred 3D wet refractivity fields.  相似文献   
300.
纳米二氧化钛吸入对小鼠肺部和血清生化指标的影响   总被引:1,自引:0,他引:1  
将成年健康的小鼠(每组8只)暴露在含有1 500 mg/m3纳米二氧化钛气溶胶密闭装置内,以暴露在空气中的小鼠作为对照,研究了纳米二氧化钛对小鼠肺部组织和血清生化指标的影响.经过不同时间的暴露后将小鼠处死,收集血样并取肺部组织进行生化指标分析和组织病理学检验.血清生化指标检测结果显示,在所有的试验组中,乳酸脱氢酶的活性均提高,丙氨酸氨基转移酶的活性和尿素氮在暴露28天组中增加,肌酐在暴露14天组和28天组中均增加,其他血清学指标未见明显异常.组织病理学检测结果显示,暴露28天的肺泡间隙有纳米粒子存在,并且肺部炎症逐渐增强.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号