首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   280篇
  免费   64篇
  国内免费   49篇
航空   168篇
航天技术   92篇
综合类   21篇
航天   112篇
  2023年   15篇
  2022年   18篇
  2021年   23篇
  2020年   22篇
  2019年   20篇
  2018年   14篇
  2017年   12篇
  2016年   12篇
  2015年   8篇
  2014年   33篇
  2013年   14篇
  2012年   13篇
  2011年   25篇
  2010年   15篇
  2009年   11篇
  2008年   17篇
  2007年   18篇
  2006年   11篇
  2005年   10篇
  2004年   5篇
  2003年   10篇
  2002年   9篇
  2001年   13篇
  2000年   8篇
  1999年   5篇
  1998年   7篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1991年   1篇
  1989年   2篇
  1984年   3篇
排序方式: 共有393条查询结果,搜索用时 15 毫秒
211.
针对超声波探伤试块表面裂纹长度、宽度及深度测量中遇到的测量难题.详细介绍用于长度测量的拓膜法胶样制作的标准流程.并对结果进行测量不确定度分析和测量数据验证。  相似文献   
212.
空客针对龙骨梁主起舱门作动筒接头有可能产生裂纹的问题下发服务通告,提出需要对主起舱门作动筒接头进行无损检测。本文介绍了采用超声波仪器进行此检测的操作方法,并对操作中遇到的一些难点进行具体分析。  相似文献   
213.
张秀云  宗群  朱婉婉  刘文静 《宇航学报》2019,40(11):1332-1340
针对柔性航天器姿态机动的“快速性”及“稳定性”矛盾,研究了一种优化与控制综合的姿态机动轨迹设计与跟踪控制方法。首先,考虑柔性航天器姿态机动过程中既快又稳的需求,建立姿态机动的多目标多约束条件,优化获得姿态机动轨迹,在满足快速性基础上,最大限度提高稳定性;其次,设计新型的快速鲁棒输入成形器(FRIS),与传统输入成形器相比,FRIS具有更短的作用时间及更强的鲁棒性,能够有效抑制柔性附件振动,为姿态机动的“快速性”及“高精度”奠定基础;最后,设计新型自适应连续终端滑模控制器(ACTSMC),避免增益过估计,提高控制精度,实现对期望姿态轨迹的有限时间快速高精度跟踪控制。数值仿真校验了所提方法的有效性。  相似文献   
214.
本文介绍一种树的方式对网站内容实现动态有序管理,就象windows资源管理器一样,方便直观。最后举了一个部门结构树的例子来阐述。  相似文献   
215.
An active control technique utilizing piezoelectric actuators to alleviate gust-response loads of a large-aspect-ratio flexible wing is investigated. Piezoelectric materials have been exten-sively used for active vibration control of engineering structures. In this paper, piezoelectric mate-rials further attempt to suppress the vibration of the aeroelastic wing caused by gust. The motion equation of the flexible wing with piezoelectric patches is obtained by Hamilton's principle with the modal approach, and then numerical gust responses are analyzed, based on which a gust load alle-viation (GLA) control system is proposed. The gust load alleviation system employs classic propor tional-integral-derivative (PID) controllers which treat piezoelectric patches as control actuators and acceleration as the feedback signal. By a numerical method, the control mechanism that piezo-electric actuators can be used to alleviate gust-response loads is also analyzed qualitatively. Further-more, through low-speed wind tunnel tests, the effectiveness of the gust load alleviation active control technology is validated. The test results agree well with the numerical results. Test results show that at a certain frequency range, the control scheme can effectively alleviate the z and x wing-tip accelerations and the root bending moment of the wing to a certain extent. The control system gives satisfying gust load alleviation efficacy with the reduction rate being generally over 20%.  相似文献   
216.
The presence of coronal holes in solar disk plays an important role in influencing the space weather and generation of the solar wind. As such there lies a requirement in proper study and prediction of coronal holes occurs in the solar disk. This, in turn, arises the necessity of detection of coronal holes present in the solar disk. In this work, a Hough transformed inspired fuzzy-energy simulated dual contours-based segmentation technique has been proposed for the detection and extraction of holes in solar disk. In the proposed method Hough transform has been induced to initialize the contour for the contour-based method of segmentation. In the algorithm, two contours (active and static) have been initiated and made to evolve based on the energy function by incorporating the gray-scale intensity. Here in the work one contour is made to deform its shape while the other contour is kept static for the coronal holes detection purpose. The experiment has been carried out on few benchmark datasets and the corresponding outcomes have been compared with the results of other existing algorithms. The comparison results highlight the performance of the proposed technique in detection of coronal holes in solar disk.  相似文献   
217.
218.
《中国航空学报》2020,33(4):1218-1227
The application of reliability analysis and reliability sensitivity analysis methods to complicated structures faces two main challenges: small failure probability (typical less than 10−5) and time-demanding mechanical models. This paper proposes an improved active learning surrogate model method, which combines the advantages of the classical Active Kriging – Monte Carlo Simulation (AK-MCS) procedure and the Adaptive Linked Importance Sampling (ALIS) procedure. The proposed procedure can, on the one hand, adaptively produce a series of intermediate sampling density approaching the quasi-optimal Importance Sampling (IS) density, on the other hand, adaptively generate a set of intermediate surrogate models approaching the true failure surface of the rare failure event. Then, the small failure probability and the corresponding reliability sensitivity indices are efficiently estimated by their IS estimators based on the quasi-optimal IS density and the surrogate models. Compared with the classical AK-MCS and Active Kriging – Importance Sampling (AK-IS) procedure, the proposed method neither need to build very large sample pool even when the failure probability is extremely small, nor need to estimate the Most Probable Points (MPPs), thus it is computationally more efficient and more applicable especially for problems with multiple MPPs. The effectiveness and engineering applicability of the proposed method are demonstrated by one numerical test example and two engineering applications.  相似文献   
219.
Tumbling debris has become a great threat to orbit activities. Contactless interaction is a novel concept for active debris removal, through which the tumbling debris no longer rotates freely but is under control. The contactless interaction method aims to de-tumble the debris and then maintain desired relative states between the spacecraft and debris. The spacecraft is simultaneously stabilized through three-axis attitude control, which makes the de-tumbling and capture operation much safer, more effective and accurate. The dynamics and control for the contactless interaction have been little studied in the past years. This paper considers a generic dynamics and control problem for contactless interaction between a spacecraft and debris. A translational and rotational dynamics model of contactless interaction is proposed and the 6-DOF equations are established. The contactless interaction control law is designed with the backstepping method, and the spacecraft three-axis control law is designed with the PD control. Simulation results show that the angular momentum is transferred from the debris to the spacecraft and the debris is thus de-tumbled. The desired relative states are achieved efficiently. Significantly, the spacecraft and debris no longer rotate in the inertial frame and, hence, the safety and accuracy for capture operation are guaranteed.  相似文献   
220.
Electro-hydrostatic actuator (EHA) pumps are usually characterized as high speed and small displacement. The tilting inertia moment on the cylinder block produced by the inertia forces of piston/slipper assemblies cannot be ignored when analyzing the cylinder block balance. A large tilting inertia moment will make the cylinder block tilt away from the valve plate, resulting in severe wear and significantly increased leakage. This paper presents an analytical expression for the tilting inertia moment on the cylinder block by means of vector analysis. In addition, a high-speed test rig was built up, and experiments on an EHA pump prototype were carried out at high speeds of up to 10,000 r/min. The predicted nature of the cylinder block tilt at high speeds corresponds closely to the witness marks on the dismantled EHA pump prototype. It is suggested that more attention should be given to the tilting inertia moment acting on the cylinder block of an EHA pump since both wear and leakage flow between the cylinder block and the valve plate are very much dependent on this tilting moment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号