首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   642篇
  免费   147篇
  国内免费   51篇
航空   548篇
航天技术   86篇
综合类   67篇
航天   139篇
  2024年   11篇
  2023年   31篇
  2022年   34篇
  2021年   33篇
  2020年   42篇
  2019年   41篇
  2018年   44篇
  2017年   37篇
  2016年   42篇
  2015年   28篇
  2014年   33篇
  2013年   21篇
  2012年   31篇
  2011年   40篇
  2010年   42篇
  2009年   30篇
  2008年   32篇
  2007年   22篇
  2006年   25篇
  2005年   23篇
  2004年   27篇
  2003年   20篇
  2002年   12篇
  2001年   12篇
  2000年   13篇
  1999年   8篇
  1998年   10篇
  1997年   10篇
  1996年   9篇
  1995年   19篇
  1994年   12篇
  1993年   5篇
  1992年   12篇
  1991年   3篇
  1990年   14篇
  1989年   5篇
  1988年   5篇
  1987年   1篇
  1984年   1篇
排序方式: 共有840条查询结果,搜索用时 46 毫秒
481.
疏导式热防护结构通过高温热管将前缘驻点等高热流部位的热量快速疏导至大面积区域,可有效降低防热压力,实现新型飞行器前缘非烧蚀防热。然而,疏导结构内部液体工质回流受到飞行器加速过载的显著影响。通过理论评估与地面试验获得了典型过载条件下尖前缘热疏导结构的抗过载性能。结果表明,维持加热条件不变,当过载环境大于4g后,热疏导性能受到明显影响,但过载减小后疏导性能得以快速恢复。研究结论对于一体化疏导结构的设计具有重要的指导意义。  相似文献   
482.
为避免高马赫数、大攻角来流引发的叶片颤振,将串列叶片技术引入到超声速通流风扇叶栅中,对其进行串列改型及气动性能研究。利用准二维数值模拟,对串列叶片前、后排叶片的弦长比参数进行了详细的对比研究。结果表明:影响气动性能的关键因素是后排叶片进口压力侧激波的落点,在本文研究条件下,随着弦长比的减小总压损失呈减小的趋势,当弦长比由0.99减小到0.43时,设计攻角下,15°折转角叶型总压损失可减小27%,30°折转角叶型总压损失可减小38%。进一步的研究表明,通过减小弦长比可有效控制后排叶片前缘斜激波在相邻叶片吸力侧的落点以实现损失降低,并且这种降低效应在小弯角叶型上比大弯角叶型更容易实现。  相似文献   
483.
李胜远  郑龙席 《推进技术》2021,42(10):2349-2357
针对脉冲爆震涡轮发动机(PDTE)中的周期性、强非定常轴向载荷可能导致滚珠轴承可靠性降低的问题,应用损伤力学理论和有限元法建立了PDTE中双半内圈球轴承的疲劳寿命预测模型,研究了在脉冲爆震燃烧室(PDC)引入的周期性、强非定常轴向载荷作用下双半内圈球轴承的疲劳寿命。研究结果表明双半内圈球轴承的两个半内圈均在接触区次表面最大切应力位置处萌生裂纹,随后裂纹逐渐扩展至表面导致轴承疲劳失效。在PDC爆震阶段,由于引起第一半内圈疲劳损伤的切应力范围较小,因此第一半内圈的疲劳寿命较高;而在PDC填充和排放阶段,由于接触摩擦作用以及滚珠滚过第二半内圈时产生较大的切应力范围,从而导致第二半内圈的疲劳寿命较低。在对PDC爆震阶段引入的峰值轴向载荷进行合理设计后,PDTE中双半内圈球轴承的疲劳寿命主要由第二半内圈的接触状态和轴承的润滑条件决定。本文的研究成果为PDTE中滚珠轴承的选型与设计提供参考。  相似文献   
484.
为了分析涡轮叶片裂纹故障的3维叶尖间隙动态变化特性,以3维叶尖间隙动态测量试验台上的模拟涡轮转子为研究 对象,建立了涡轮叶片3维叶尖间隙的有限元分析模型;采用数值仿真分析方法分别深入地分析了无裂纹涡轮叶片和不同长度裂 纹叶片3维叶尖间隙的动态变化特性。结果表明:对于无裂纹涡轮叶片,气动载荷会导致其发生弯曲变形,进而,导致轴向偏转角 呈先增大后减小的变化趋势,周向滑移角则逐渐减小,并且气动载荷对轴向偏转角和周向滑移角的影响比对径向间隙的影响更为 显著;对于有裂纹涡轮叶片,在气动载荷、离心载荷、叶片尾缘裂纹故障以及叶片自身形态等多种因素的共同影响下,导致径向间 隙呈现逐渐增大,而轴向偏转角和周向滑移角均呈现逐渐减小的变化趋势。  相似文献   
485.
为研究不同改进措施对平面叶栅风洞流场品质的改进效果与机理,以高负荷扩压叶栅为研究对象,利用数值模拟方法研究了试验器进口段上下侧壁抽吸措施、出口导流尾板措施、抽吸与尾板组合措施对叶栅风洞流场品质的改进效果。研究结果表明:上下侧壁抽吸减小了进口段的静压梯度,减弱了上下侧壁附面层对进口流体流向的影响;导流尾板减弱了外界大气对上侧壁附近通道的影响;抽吸与尾板组合措施结合了侧壁抽吸与导流尾板的优点,使得进口静压分布均匀,通道间压差阻力差异减小,对叶栅试验段流场品质的改进效果优于其他方案。在当前马赫数工况下可使叶栅进口64%的通道范围马赫数误差<0.01,冲角误差<0.5°,有三个连续通道出口周期性较好,并且轴向密流比<1.15。  相似文献   
486.
为满足某型航空发动机三支点推力轴承轴向力测试要求,提出了弹支轴向力传感器和测力环并行测量方法和双向轴向力组合标定方法,给出了弹支轴向力传感器测量原理,开展了弹支轴向力标定仿真分析和试验研究,给出了中央传动齿轮箱(IGB)和棒轴承对标定结果的影响,并与发动机测力环测试结果进行了对比,研究表明:弹支轴向力传感器输出受安装位置和对象影响较大,有未装配IGB和棒轴承的标定数据偏差分别可达73.4%和17.8%,按发动机实际装配关系进行标定组件装配才能提高测量精度。发动机实测结果表明:弹支轴向力传感器多通道全桥取均值的测量方法和测力环轴向力数据趋势一致,由此验证提出的双向弹支轴向力测试方法具有很高的工程应用价值。  相似文献   
487.
普通接触式环瓣浮环密封高速下不开启易造成磨损失效,动压式环瓣浮环一定转速下径向开启并保持无摩擦无磨损稳定运行,具有较好的应用前景。建立动压式环瓣浮环密封固体域及流场数值计算模型,计算开启阻力、开启力、泄漏率及温升,分析动压槽结构参数对密封开启的影响,讨论密封性能随槽型参数的变化趋势。基于数值分析优化参数,试验验证开槽前后密封的泄漏率及温升,讨论不同开启情况下密封的磨损特性。结果表明:优化的动压槽能可明显改变主密封间隙中的压力分布,提高流体动压力,实现开启,使密封高速下稳定无摩擦运转并保持较低的泄漏率,大幅度降低摩擦温升,改善密封的摩擦磨损。动压槽最佳深度宜为3~5μm,密封具有较大的开启力;槽宽增大开启力先增大后变缓,过大的槽宽对提高开启力不明显;工作压力增加密封开启难度增加,可通过增加槽数或提高转速实现开启;动压槽的槽深较大时,密封先迅速磨损后逐渐稳定,具有自磨损、自稳定的特点。研究结果为动压式环瓣浮环密封的结构设计和工程应用提供了参考。  相似文献   
488.
为探索缝式机匣处理在对转压气机中的适用性,采用数值模拟的方法研究了缝式机匣处理对对转压气机气动性能和稳定裕度的影响。通过分析缝式机匣处理对压气机总体性能和叶尖流场的影响,以揭示缝式机匣处理在对转压气机中的扩稳机理。研究表明:缝式机匣处理可以提高对转压气机的失速裕度,机匣处理的轴向位置对对转压气机的气动性能和失速裕度有显著的影响。随着机匣处理的前移,对转压气机峰值效率的亏损逐渐减小,而失速裕度改善程度相差不大。机匣处理缝的抽吸和射流效应减弱了转子R2叶顶通道的堵塞程度,通过抑制叶尖泄漏流和二次泄漏流的发展以推迟失速的发生,进而实现扩稳。此外,缝式机匣处理时可能改变该对转压气机的最先失速级,同时也证明了缝式机匣处理在变工况下扩稳的有效性。  相似文献   
489.
为解决切割叶轮后盖板平衡轴向力的方法会导致泵扬程和效率降低这一关键问题,提出了一种补偿叶轮后盖板切割量平衡轴向力的方法。采用在同一个叶轮上切割叶轮后盖板和补偿叶轮后盖板切割量的研究方案,开展了泵性能、叶顶间隙压力、前后泵腔及平衡腔液体压力的系统测量。试验研究表明:以原型叶轮在设计流量下的扬程、效率和轴向力为基准,相对切割率为3.81%、7.62%、11.43%时,泵的扬程分别下降了3.52%、6.41%、9.93%,效率分别下降了2.97%、4.59%、6.18%,轴向力分别降低了8.02%、20.57%、22.3%;而补偿叶轮后盖板切割量后,泵的扬程最大降幅仅为4.18%,效率最大降幅仅为2.7%,轴向力最大降幅达到了83.1%;相对于切割叶轮后盖板而言,补偿叶轮后盖板切割量可以使前泵腔压力升高而后泵腔压力降低。  相似文献   
490.
徐国武  李齐  周伟江 《宇航学报》2018,39(9):953-959
为便于火星着陆器抛背罩安全性仿真,针对火星着陆器简化外形开展了背罩分离的定常数值计算,分析了着陆平台与背罩之间的气动效应,获得了着陆平台与背罩的轴向力系数随分离间距的变化规律。结果表明:初始分离瞬间,由于着陆平台嵌入背罩内部,它们之间的压力接近驻点压力,随着分离间距的增加,背罩与着陆平台之间的压力逐渐由接近驻点压力慢慢过渡到接近底部绕流压力,至分离间距为0.1倍大底直径后,背罩一直处于着陆平台的底部绕流区。分离间距为0~0.06倍大底直径时,背罩的轴向力系数大于着陆平台,容易分离;分离间距为0.06~6倍大底直径时,着陆平台的轴向力系数大于背罩,存在分离后重新结合并发生碰撞的危险,且在分离间距为1倍大底直径时,着陆平台与背罩之间由于回流作用而产生的吸力达到峰值,此时发生碰撞的危险系数最大;分离间距超过6倍大底直径后,背罩的轴向力系数再次超越着陆平台,可以确保抛背罩安全分离。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号