首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1792篇
  免费   329篇
  国内免费   168篇
航空   1355篇
航天技术   310篇
综合类   159篇
航天   465篇
  2024年   15篇
  2023年   65篇
  2022年   82篇
  2021年   81篇
  2020年   75篇
  2019年   74篇
  2018年   27篇
  2017年   61篇
  2016年   55篇
  2015年   53篇
  2014年   86篇
  2013年   64篇
  2012年   117篇
  2011年   130篇
  2010年   83篇
  2009年   101篇
  2008年   112篇
  2007年   91篇
  2006年   80篇
  2005年   74篇
  2004年   54篇
  2003年   72篇
  2002年   57篇
  2001年   48篇
  2000年   52篇
  1999年   41篇
  1998年   36篇
  1997年   46篇
  1996年   41篇
  1995年   33篇
  1994年   36篇
  1993年   49篇
  1992年   37篇
  1991年   47篇
  1990年   37篇
  1989年   30篇
  1988年   19篇
  1987年   18篇
  1986年   3篇
  1985年   1篇
  1983年   3篇
  1981年   2篇
  1980年   1篇
排序方式: 共有2289条查询结果,搜索用时 619 毫秒
581.
文章利用1989-2004年间"Los Alamos"7 颗地球同步轨道卫星的数据对不同磁暴条件下处于地球同步轨道高度等离子体片区域的卫星表面充电电位和热电子(0.03~45 keV)温度随地方时的分布及随磁暴发生时间的变化规律进行统计分析.根据对磁层顶电流修正后的Dst指数(Dst*)将磁暴分成弱磁暴、强磁暴以及超大磁暴.在随地方时的分布上,弱磁暴时卫星最可能在午夜后侧负向强充电(>800 V);随着磁暴强度的增加,在超大磁暴情况下该区域会沿东西方向扩展到夜晚21时到凌晨4时的区域.在随磁暴发生时间的分布上,弱磁暴下卫星表面充电到高负电位主要发生在Dst*最低点前3 h和后2 h的时刻,强磁暴下主要发生在Dst*最低点时刻,而超大磁暴下主要发生在恢复相,持续时间达十几个小时.表面电位的分布规律和热电子温度的分布规律表现一致:卫星表面负电位超过100 V的区域主要集中在热电子温度大于2 keV的区域,而表面负电位最可能超过800 V的区域主要集中在热电子温度大于2.5 keV的区域.通过统计分析看出,对于那些极可能发生高负电位充电(>8 kV)情况下的卫星表面电位分布与磁暴的强弱并无明显的相关性,但发现在弱磁暴情况下明显集中在正午前侧区域.  相似文献   
582.
为实现飞机曲面机器人加工的自动轨迹规划,研究了基于模型几何特征的飞机曲面分片算法。通过分析飞机构件加工的工艺参数信息,以表面加工允许的最大曲率或最大偏角为阈值,提出基于近似曲率的三角网格模型分片方法。以三角网格中任意面片为起点,沿网格邻接关系向外拓展联接,形成若干近似平面化的模型分片结构,当超过阈值时则停止拓展,从而得到一整片曲面。通过对飞机CAD模型进行分片,发现采用本文提出方法可以保证分片结果的均匀性,为后期加工轨迹自动规划规划提供保障。  相似文献   
583.
IC10定向凝固高温合金缓进给磨削表面完整性研究   总被引:2,自引:0,他引:2  
通过设计不同磨削工艺参数组合,研究了定向凝固高温合金IC10在缓进给磨削过程中表面完整性的变化,分析了IC10合金在缓进磨削过程中工艺参数对磨削表面粗糙度、显微硬度、三维形貌、显微组织的影响规律。研究表明:IC10合金在缓进给磨削过程中,当砂轮线速度V_s在15~20m/s之间变化,工件进给速度V_w不大于200mm/min,磨削深度a_p不超过0.5mm时,可以获得较好的表面质量。另外,IC10在缓进给磨削过程中会产生较严重的加工硬化现象,硬化程度最大可达26.9%,最大硬化层深度可以达到230μm。同时,IC10在缓进磨削过程中沿磨削深度方向上会产生表面白层和塑性变形层,其深度分别在0.24~3.2μm和0.48~3.8μm之间变化。  相似文献   
584.
为了研究TC11钛合金铣削加工过程中刀具磨损对加工表面质量的影响规律,设计了刀具磨损与铣削表面粗糙度、表面残余应力的试验。结果表明:TC11钛合金铣削加工过程中的刀具磨损可以分为:初期磨损、正常磨损、剧烈磨损三个阶段。当刀具处于"初期磨损"时,TC11铣削表面粗糙度随切削时间逐渐减小,铣削表面残余应力也呈减小趋势;当刀具处于"正常磨损"阶段时,铣削表面粗糙度和铣削表面残余应力都呈增加趋势,但增加的速度平稳;当刀具进入"剧烈磨损"阶段时,铣削表面粗糙度迅速增大,表面残余应力也较前两个阶段显著增加。另外,试验过程中的TC11铣削表面残余应力均表现为压应力。  相似文献   
585.
探求切削力、振动和表面粗糙度之间的相互关系,对实现表面粗糙度的预测预报具有重要意义。以MQL铣削45钢为试验对象,进行了切削速度v、每齿进给量f_z、切削深度a_p的三因素四水平的64组切削试验,在线测量主切削力、轴向力和径向力及振动,对切削分力数据处理得到相应的平均值、标准差和均方根值,同时离线测量出二维粗糙度R_a、三维粗糙度平均值S_a和均方根值S_q。采用正态分布、指数分布、Gamma分布、Weibull分布和Cauchy分布等函数拟合,根据AIC准则确定出最优分布函数,采用极大似然法估计出未知参数。使用Gaussian Copula、t-Copula、Frank Copula、Gumbel Copula、Clayton Copula等Copula函数拟合铣削力、振动和粗糙度之间相关结构形式,采用AIC准则优选出最优Copula函数,并确定出参量。利用最优Copula函数导出的Kendall秩相关系数τ作为评价指标,分析比较了铣削力、振动与表面粗糙度的整体相关性。采用混合Copula函数对铣削力、振动与表面粗糙度的尾部相关性进行了分析。  相似文献   
586.
火星表面没有全球性磁场保护,存在较强的辐射环境。文章基于Mars-GRAM模型和MCD模型的火星大气数据、"海盗号"(Viking Lander 1/2)及"探路者号"(Pathfinder)等测量得到的火星土壤数据、银河宇宙射线环境(CREME 96模型)以及太阳宇宙射线环境(1989年10月太阳事件),采用基于GEANT4的粒子输运方法,分析得到了火星表面辐射环境;并与"好奇号"火星车辐射评价探测器(Radiation Assessment Detector,RAD)实测值进行了比较。结果显示:次级伽马光子和中子通量分析值与实测值偏差不超过50%,辐射剂量分析值与实测值偏差不超过5%。火星表面辐射环境可用于分析航天员在不同位置处遭遇的人体剂量,作为载人火星任务着陆点数据参考。  相似文献   
587.
航天器表面介质材料易遭受表面充放电危害。利用30keV单能电子对几种不同的航天介质材料进行了表面充放电模拟试验,测量了不同电子通量辐照下的表面充电电位以及放电脉冲。试验结果表明,聚酰亚胺薄膜在接地处理不当时表面可充至千伏以上,易发生表面放电,且辐照强度越大,放电频率越高。表面镀铝的聚酰亚胺薄膜在不接地时,铝膜成为悬浮导体更加剧了放电的危害。而通过渗碳处理的聚酰亚胺薄膜,其良好的导电性能可有效抵御nA/cm~2量级电子的表面充电。聚四氟乙烯天线罩表面未进行防静电处理时,表面充电电位可达万伏量级,极易发生放电。  相似文献   
588.
基于表面缺陷特征的疲劳寿命预测方法   总被引:2,自引:2,他引:0  
在含表面缺陷试样的疲劳数据的基础上,提出了表面缺陷对疲劳寿命影响的尺寸参数,将其引入Walker寿命方程,建立了可以考虑表面缺陷尺寸特征的疲劳寿命预测方程。将该方程的寿命预测结果同考虑应力梯度的寿命预测方法的计算结果进行对比,两者在±3倍以内,验证了方法是准确可靠的。进而,将该方程应用于粉末高温合金涡轮盘的疲劳寿命预测中,获得了不同尺寸的表面缺陷对涡轮盘寿命的影响规律,其工程意义在于:依据涡轮盘危险位置的应力特征,能够给出存在缺陷时的疲劳寿命,可作为使用过程中的重要参考数据,一旦出现漏检的表面缺陷,也能够保证涡轮盘的安全工作。   相似文献   
589.
针对双氰胺固化温度较高、在环氧树脂中分散不均等缺点,综述了物理和化学改性方法对双氰胺固化反应活性和储存性能的影响,结合双氰胺的固化机理,分析了双氰胺的改性原理,展望了其未来的发展方向。  相似文献   
590.
针对改性双基推进剂在不同载荷条件下表现出不同力学响应的现象,对其进行了恒应变率拉伸和压缩试验及蠕变拉伸和压缩试验,获得了4组应变率下拉压应力-应变曲线和3组温度下拉压蠕变-时间曲线,使用应力和应变拉压不对称因子反映了拉伸和压缩曲线的不对称程度。结果表明,改性双基推进剂具有明显的拉压不对称力学性能,且该性能受到应变率和温度的影响。分析了改性双基推进剂具有拉压不对称性的内在成因,认为材料初始缺陷的扩展、材料分子链移动空间的变化、基体材料与填充颗粒材料力学性能的不同是导致改性双基推进剂具有拉压不对称力学性能的内在原因。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号