首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   349篇
  免费   128篇
  国内免费   109篇
航空   184篇
航天技术   140篇
综合类   39篇
航天   223篇
  2024年   4篇
  2023年   25篇
  2022年   37篇
  2021年   35篇
  2020年   33篇
  2019年   35篇
  2018年   23篇
  2017年   22篇
  2016年   20篇
  2015年   23篇
  2014年   13篇
  2013年   22篇
  2012年   28篇
  2011年   26篇
  2010年   22篇
  2009年   28篇
  2008年   18篇
  2007年   22篇
  2006年   15篇
  2005年   18篇
  2004年   15篇
  2003年   10篇
  2002年   11篇
  2001年   14篇
  2000年   8篇
  1999年   7篇
  1998年   4篇
  1997年   3篇
  1996年   8篇
  1995年   4篇
  1994年   6篇
  1993年   2篇
  1992年   6篇
  1991年   5篇
  1990年   5篇
  1989年   6篇
  1988年   1篇
  1987年   2篇
排序方式: 共有586条查询结果,搜索用时 15 毫秒
31.
建立了离子推力器束流分布的高斯模型,以200mm氙离子推力器为例,在不同工作环境下对推力器束流分布进行了数值模拟,并通过试验测量了推力器引出切面不同位置(轴向z=50mm,z=100mm)下的径向束电流密度和束离子密度分布。通过对数值模拟结果与试验测量结果的比较,误差为17%,认为数值模拟结果与试验测量结果吻合较好。表明离子推力器引出束流呈轴对称分布,在推力器出口附近,束离子密度很大,越往下游,密度越小且束流出现发散。  相似文献   
32.
航天器总装厂房是航天器携带微生物的重要环境来源之一,厂房内的微生物检测与鉴定及其杀菌方法研究对于航天器的微生物安全与防控技术研究具有重要意义。本文报道了航天器AIT中心分离的青霉属、曲霉属和枝孢霉属等8个种属的典型霉菌菌落和孢子形态,为航天器霉菌鉴定和菌种库的构建提供了参考;同时研究了消毒剂、UVC辐照和热处理对这些霉菌的消杀效果,以期为航天器的霉菌防控技术研究提供科学依据。研究结果表明不同种属霉菌对3种消杀方法的敏感性具有较大的差异性。结合我国不同地区AIT中心霉菌种属的多样性,在进行我国AIT中心霉菌的消杀工作时应有针对性地科学选择不同消杀方法或综合应用多种消杀方法。  相似文献   
33.
考察了天然水体中常见的SiO_3~(2-)对KMnO_4/FeSO_4工艺混凝除磷的影响。SiO_3~(2-)存在时KMnO_4/FeSO_4工艺混凝除磷的效能随着溶液pH的升高呈现先增加后降低的趋势。SiO_3~(2-)浓度为1.0 mmol/L,溶液pH值为4~6时,SiO_3~(2-)可促进KMnO_4/FeSO_4工艺除磷的效能,KMnO_4/FeSO_4工艺对磷的去除效果分别增加了6.0%,9.9%和6.3%;溶液pH值为7~9时,SiO_3~(2-)可显著抑制KMnO_4/FeSO_4工艺除磷的效能,KMnO_4/FeSO_4工艺对磷的去除效果分别降低了14.76%,32.6%和17.3%。KMnO_4/FeSO_4工艺形成的絮体颗粒物表面ζ电位显著降低,溶液中残余铁的量明显提高。另外,水中SiO_3~(2-)对KMnO_4/FeSO_4工艺形成的絮体颗粒物的组成和表面特征均有一定影响。该研究为KMnO_4/FeSO_4工艺混凝除磷技术的推广提供了必要的理论基础。  相似文献   
34.
ZnO作为一种典型的透明导电氧化物(Transparent conductive oxide,TCO)材料,具有同氧化铟锡(Indium tin oxide,ITO)相比拟的光电性能,其原料丰富、绿色环保、易于制备、生成成本低等优点使ZnO成为最有希望替代ITO的材料。本文以玻璃为衬底,利用量子点种子层作为缓冲层,采用传统水热方法制备了低成本ZnO透明导电薄膜,采用特殊的紫外光辐照工艺对薄膜进行后处理,探索薄膜生长参数和紫外光辐照处理工艺对其透光率和导电性的影响。结果表明,紫外辐照处理不影响薄膜的透光性能,而使材料的方块电阻降低3个数量级,数值从没处理时的1.5×105 Ω/□降低到 150 Ω/□,极大地提高了薄膜的电导率,为ZnO薄膜材料电导率的提高提供了一个简单高效的途径。  相似文献   
35.
电离辐照诱发面阵电荷耦合器暗信号增大试验   总被引:1,自引:0,他引:1  
针对电荷耦合器件(CCD)在空间轨道环境中应用时易受到辐射损伤的影响,对面阵CCD的电离辐照损伤效应问题进行了试验研究.首先,通过开展面阵CCD60 Co γ射线电离辐照效应试验,在暗场条件下测试了面阵CCD辐照后输出信号随积分时间的变化,并拟合计算出暗信号斜率.然后,对比分析了不同偏置条件下辐照后暗信号退化的试验规律;分析了不同偏置条件下辐照后暗信号的退火恢复情况;分析了不同积分时间、不同总剂量下的暗信号不均匀性的变化规律.最后,阐述了电离辐照损伤诱发面阵CCD暗信号增大的物理机制.结果表明:面阵CCD对电离辐照损伤很敏感,在进行航天器成像系统设计时,要充分考虑CCD受电离辐照损伤带来的影响.  相似文献   
36.
通过Cluster卫星在2005年3月16日观测到的一个准平行激波观测事例,研究了准平行激波上游低频等离子体波动与能量离子之间的关系.卫星观测结果表明,在准平行激波上游,离子微分能通量受到了非线性波动的调制.在磁场强度较小区域,离子微分能通量较高.产生这种现象的可能原因是准平行激波上游的非线性波动可以捕获离子,被捕获的离子在波动中来回弹跳并被电场加速,从而导致磁场强度较小区域离子微分能通量较高.这一观测结果与已有的混合模拟结果相吻合.   相似文献   
37.
为满足航天电子产品的工艺实施和空间服役要求,本文详细开展了MD-130胶黏剂的固化工艺及空间适应性研究。结果表明,在150℃等温固化60 min后其拉伸剪切强度达到18 MPa,表明其为优选的固化工艺。高低温环境冲击和低剂量的粒子辐照后胶黏剂固化反应更加充分,其芯片剪切强度提高,而大剂量辐照致使高分子降解现象明显,造成了胶接强度的降低。经环境试验后,MD-130胶黏剂仍具有良好的力学性能,满足设计使用要求。  相似文献   
38.
利用MMS观测数据,对磁层顶通量绳内离子惯性尺度(di)的结构进行分析研究.结果发现,许多不同尺度(约1di至数十di)的通量绳内都存在具有di尺度的电流 j m,其方向在磁层顶局地坐标系的-M方向,即与磁层顶查普曼-费拉罗电流同向,由电子在+M方向的运动( v em)携带.这些电流结构具有以下特征:磁鞘与磁层成分混合,磁场为开放形态;离子去磁化,电子与磁场冻结;N方向(即垂直于磁层顶电流片方向)的电场 E n显著增大,幅度达到约20mV·m-1,并伴有明显的尖峰状起伏,该增强和尖峰状起伏的电场对应于霍尔电场.分析表明,电流、电子与离子运动的偏离以及霍尔电场之间遵从广义欧姆定律,三者密切关联.进一步对磁层顶磁重联的探测数据进行分析发现,在很多重联区内也存在与通量绳内相似的结构,其尺度约为di量级,其中霍尔电场 E N、电流 j M和电子速度 v eM均与通量绳内对应物理量的方向相同且幅度相近.基于上述观测事实,采用经典FTE通量绳模型,对通量绳内电流、电子运动和霍尔电场的起源进行了初步探讨,认为其来源于磁层顶无碰撞磁重联区内的相应结构,并且后者在离子尺度通量绳的形成过程中起到重要作用.   相似文献   
39.
从离子连续性方程和动量方程出发,比较全面地考虑了太阳光电离、星光电离、地冕电离、星际背景电离和流星离子流等电离源,综合分析Es层的主要动力学过程和光化学过程,以风剪切理论为基础,研究中性成分碰撞、电场作用、金属离子作用和分子离子作用等机制对离子分布的影响,建立了一维时变电离层Es物理模型.对离子产生率、垂直方向的离子速度在高度和时间上的变化进行仿真和计算,得到了在电场及风剪切作用下的离子密度剖面24h内的变化规律.根据建立的模型,以昆明相干散射雷达观测的径向风结果作为模型输入参考,仿真并得到了电离层Es电子密度的时空分布,据此反演出电离层Es临界频率f0Es.与昆明站电离层测高仪同时间观测的情况进行对比,结果比较一致,验证了建立的Es层物理模型正确性.   相似文献   
40.
蓝宝石光学窗口在空间环境服役时,将会受到不同射线(如γ射线、X射线)以及离子流(如电子、质子等)的辐照作用,使其光学性质及结构发生变化,影响使用性能.为模拟空间环境,采用60Co源及电子流对蓝宝石进行辐照,研究了蓝宝石经辐照后的光学性能及结构变化,测试了蓝宝石辐照前后的表面粗糙度以及吸收光谱和荧光光谱变化.AFM实验表明,γ射线辐照对蓝宝石表面粗糙度几乎没有影响,而电子流辐照使得蓝宝石表面粗糙度增加.吸收光谱结果显示,蓝宝石经射γ线及电子流辐照后在紫外可见波段表现出较强的吸收,出现206,238,300和330 nm等吸收峰.荧光光谱发现335 nm和410 nm等荧光发光峰.曩后分析了色心产生原因,计算了辐照前后的色心浓度.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号